9 research outputs found

    A probabilistic multi-objective approach for FACTS devices allocation with different levels of wind penetration under uncertainties and load correlation

    Get PDF
    This study presents a probabilistic multi-objective optimization approach to obtain the optimal locations and sizes of static var compensator (SVC) and thyristor-controlled series capacitor (TCSC) in a power transmission network with large level of wind generation. In this study, the uncertainties of the wind power generation and correlated load demand are considered. The uncertainties are modeled in this work using the points estimation method (PEM). The optimization problem is solved using the Multi-objective particle swarm optimization (MOPSO) algorithm to find the best position and rating of the flexible AC transmission system (FACTS) devices. The objective of the problem is to maximize the system loadability while minimizing the power losses and FACTS devices installation cost. Additionally, a technique based on fuzzy decision-making approach is employed to extract one of the Pareto optimal solutions as the best compromise one. The proposed approach is applied on the modified IEEE 30-bus system. The numerical results evince the effectiveness of the proposed approach and shows the economic benefits that can be achieved when considering the FACTS controller

    Benefit analysis of using soft DC links in medium voltage distribution networks

    Get PDF
    Soft DC Links are power electronic converters enabling the control of power flow between distribution feeders or networks. This thesis considers the use of Soft DC Links in Medium Voltage (MV) distribution networks to improve network operation while facilitating the integration of distributed generators (DGs). Soft DC Links include Soft Open Points (SOPs) and Medium Voltage Direct Current (MVDC) links. An SOP can be installed to replace mechanical switchgear in a network, providing controllable active power exchange between connected feeders, as well as reactive power compensation at each interface terminal. The deployment of an MVDC link enables power and voltage controls over a wider area, and facilitates the effective use of available capacity between adjacent networks. The benefits of using SOP and MVDC link in MV distribution networks were investigated. A multi-objective optimisation framework was proposed to quantify the operational benefits of a distribution network with an SOP. An optimisation method integrating both global and local search techniques was developed to determine the set-points of an SOP. It was found that an SOP can improve network operation along multiple criteria and facilitate the integration capacity of DGs. A Grid Transformer-based control method of an MVDC link was proposed, which requires only measurements at the grid transformers to determine the operation of an MVDC link. Control strategies considering different objectives were developed. The proposed control method is used in the ANGLE-DC project, which aims to trial the first MVDC link in Europe by converting an existing AC circuit to DC operation. It was found that an MVDC link can significantly increase the network hosting capacity for DG connections while reducing network losses compared to an AC line. An impact quantification of Soft DC Links was carried out on statistically-similar distribution networks, which refer to a set of networks with similar but different topological and electrical properties. A model was developed to determine the optimal allocation of Soft DC Links. It was found that a Soft DC Link can reduce the network annual cost under a wide range of DG penetration conditions. The statistical analysis provides distribution network planners with more robust decisions on the implementation of Soft DC Links

    Smart Energy Management for Smart Grids

    Get PDF
    This book is a contribution from the authors, to share solutions for a better and sustainable power grid. Renewable energy, smart grid security and smart energy management are the main topics discussed in this book

    Performance analysis for wireless G (IEEE 802.11G) and wireless N (IEEE 802.11N) in outdoor environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. The comparison consider on coverage area (mobility), throughput and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g

    Performance Analysis For Wireless G (IEEE 802.11 G) And Wireless N (IEEE 802.11 N) In Outdoor Environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. the comparison consider on coverage area (mobility), through put and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g
    corecore