158 research outputs found

    10361 Abstracts Collection and Executive Summary -- Theory of Evolutionary Algorithms

    Get PDF
    From September 5 to 10, the Dagstuhl Seminar 10361 ``Theory of Evolutionary Algorithms \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    Get PDF
    Today\u27s predominantly-employed signature-based intrusion detection systems are reactive in nature and storage-limited. Their operation depends upon catching an instance of an intrusion or virus after a potentially successful attack, performing post-mortem analysis on that instance and encoding it into a signature that is stored in its anomaly database. The time required to perform these tasks provides a window of vulnerability to DoD computer systems. Further, because of the current maximum size of an Internet Protocol-based message, the database would have to be able to maintain 25665535 possible signature combinations. In order to tighten this response cycle within storage constraints, this thesis presents an Artificial Immune System-inspired Multiobjective Evolutionary Algorithm intended to measure the vector of trade-off solutions among detectors with regard to two independent objectives: best classification fitness and optimal hypervolume size. Modeled in the spirit of the human biological immune system and intended to augment DoD network defense systems, our algorithm generates network traffic detectors that are dispersed throughout the network. These detectors promiscuously monitor network traffic for exact and variant abnormal system events, based on only the detector\u27s own data structure and the ID domain truth set, and respond heuristically. The application domain employed for testing was the MIT-DARPA 1999 intrusion detection data set, composed of 7.2 million packets of notional Air Force Base network traffic. Results show our proof-of-concept algorithm correctly classifies at best 86.48% of the normal and 99.9% of the abnormal events, attributed to a detector affinity threshold typically between 39-44%. Further, four of the 16 intrusion sequences were classified with a 0% false positive rate

    Evolutionary techniques in a constraint satisfaction problem: Puzzle Eternity II

    Get PDF
    Proceeding of: IEEE Congress on Evolutionary Computation (CEC 2009), May 18-21 (Monday - Thursday), 2009, Trondheim, Norway.This work evaluates three evolutionary algorithms in a constraint satisfaction problem. Specifically, the problem is the Eternity II, a edge-matching puzzle with 256 unique square tiles that have to be placed on a square board of 16 times 16 cells. The aim is not to completely solve the problem but satisfy as many constraints as possible. The three evolutionary algorithms are: genetic algorithm, an own implementation of a technique based on immune system concepts and a multiobjective evolutionary algorithm developed from the genetic algorithm. In addition to comparing the results obtained by applying these evolutionary algorithms, they also will be compared with an exhaustive search algorithm (backtracking) and random search. For the evolutionary algorithms two different fitness functions will be used, the first one as the score of the puzzle and the second one as a combination of the multiobjective algorithm objectives. We also used two ways to create the initial population, one randomly and the other with some domain information.This work was supported in part by the University Carlos III of Madrid under grant PIF UC3M01-0809 and by the Ministry of Science and Innovation under project TRA2007- 67374-C02-02

    Green Vehicle Routing Optimization Based on Carbon Emission and Multiobjective Hybrid Quantum Immune Algorithm

    Get PDF
    © 2018 Xiao-Hong Liu et al. Green Vehicle Routing Optimization Problem (GVROP) is currently a scientific research problem that takes into account the environmental impact and resource efficiency. Therefore, the optimal allocation of resources and the carbon emission in GVROP are becoming more and more important. In order to improve the delivery efficiency and reduce the cost of distribution requirements through intelligent optimization method, a novel multiobjective hybrid quantum immune algorithm based on cloud model (C-HQIA) is put forward. Simultaneously, the computational results have proved that the C-HQIA is an efficient algorithm for the GVROP. We also found that the parameter optimization of the C-HQIA is related to the types of artificial intelligence algorithms. Consequently, the GVROP and the C-HQIA have important theoretical and practical significance

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page

    Solving constrained optimization using a T-Cell artificial immune system

    Get PDF
    In this paper, we present a novel model of an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed model is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-the-art in the area) and with respect to an AIS previously proposed.En este trabajo, se presenta un nuevo modelo de Sistema Inmune Artificial (SIA), basado en el proceso que sufren las células T. El modelo propuesto se usa para resolver problemas de optimización (numéricos) restringidos. El modelo trabaja sobre tres poblaciones: Vírgenes, Efectoras y de Memoria. Cada una de ellas tiene un rol diferente. Además, el modelo adapta dinamicamente el factor de tolerancia para mejorar las capacidades de exploración del algoritmo. Se desarrolló un nuevo operador de mutación el cual incorpora conocimiento del problema. El modelo fue validado con un conjunto de funciones de prueba tomado de la literatura especializada y se compararon los resultados con respecto a Stochastic Ranking (el cual es un enfoque representativo del estado del arte en el área) y con respecto a un SIA propuesto previamente.VIII Workshop de Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI
    • …
    corecore