487 research outputs found

    Evidence of coevolution in multi-objective evolutionary algorithms

    Get PDF
    This paper demonstrates that simple yet important characteristics of coevolution can occur in evolutionary algorithms when only a few conditions are met. We find that interaction-based fitness measurements such as fitness (linear) ranking allow for a form of coevolutionary dynamics that is observed when 1) changes are made in what solutions are able to interact during the ranking process and 2) evolution takes place in a multi-objective environment. This research contributes to the study of simulated evolution in a at least two ways. First, it establishes a broader relationship between coevolution and multi-objective optimization than has been previously considered in the literature. Second, it demonstrates that the preconditions for coevolutionary behavior are weaker than previously thought. In particular, our model indicates that direct cooperation or competition between species is not required for coevolution to take place. Moreover, our experiments provide evidence that environmental perturbations can drive coevolutionary processes; a conclusion that mirrors arguments put forth in dual phase evolution theory. In the discussion, we briefly consider how our results may shed light onto this and other recent theories of evolution

    Hybrid of memory andprediction strategies for dynamic multiobjective optimization

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic multiobjective optimization problems (DMOPs) are characterized by a time-variant Pareto optimal front (PF) and/or Pareto optimal set (PS). To handle DMOPs, an algorithm should be able to track the movement of the PF/PS over time efficiently. In this paper, a novel dynamic multiobjective evolutionary algorithm (DMOEA) is proposed for solving DMOPs, which includes a hybrid of memory and prediction strategies (HMPS) and the multiobjective evolutionary algorithm based on decomposition (MOEA/D). In particular, the resultant algorithm (MOEA/D-HMPS) detects environmental changes and identifies the similarity of a change to the historical changes, based on which two different response strategies are applied. If a detected change is dissimilar to any historical changes, a differential prediction based on the previous two consecutive population centers is utilized to relocate the population individuals in the new environment; otherwise, a memory-based technique devised to predict the new locations of the population members is applied. Both response mechanisms mix a portion of existing solutions with randomly generated solutions to alleviate the effect of prediction errors caused by sharp or irregular changes. MOEA/D-HMPS was tested on 14 benchmark problems and compared with state-of-the-art DMOEAs. The experimental results demonstrate the efficiency of MOEA/D-HMPS in solving various DMOPs

    An improved memory prediction strategy for dynamic multiobjective optimization

    Get PDF
    The file attached to this record is the author's final peer reviewed version.In evolutionary dynamic multiobjective optimization (EDMO), the memory strategy and prediction method are considered as effective and efficient methods. To handling dynamic multiobjective problems (DMOPs), this paper studies the behavior of environment change and tries to make use of the historical information appropriately. And then, this paper proposes an improved memory prediction model that uses the memory strategy to provide valuable information to the prediction model to predict the POS of the new environment more accurately. This memory prediction model is incorporated into a multiobjective evolutionary algorithm based on decomposition (MOEA/D). In particular, the resultant algorithm (MOEA/D-MP) adopts a sensor-based method to detect the environment change and find a similar one in history to reuse the information of it in the prediction process. The proposed algorithm is compared with several state-of-the-art dynamic multiobjective evolutionary algorithms (DMOEA) on six typical benchmark problems with different dynamic characteristics. Experimental results demonstrate that the proposed algorithm can effectively tackle DMOPs
    • …
    corecore