1,108 research outputs found

    Optimal Microgrid Topology Design and Siting of Distributed Generation Sources Using a Multi-Objective Substrate Layer Coral Reefs Optimization Algorithm

    Get PDF
    n this work, a problem of optimal placement of renewable generation and topology design for a Microgrid (MG) is tackled. The problem consists of determining the MG nodes where renewable energy generators must be optimally located and also the optimization of the MG topology design, i.e., deciding which nodes should be connected and deciding the lines’ optimal cross-sectional areas (CSA). For this purpose, a multi-objective optimization with two conflicting objectives has been used, utilizing the cost of the lines, C, higher as the lines’ CSA increases, and the MG energy losses, E, lower as the lines’ CSA increases. To characterize generators and loads connected to the nodes, on-site monitored annual energy generation and consumption profiles have been considered. Optimization has been carried out by using a novel multi-objective algorithm, the Multi-objective Substrate Layers Coral Reefs Optimization algorithm (Mo-SL-CRO). The performance of the proposed approach has been tested in a realistic simulation of a MG with 12 nodes, considering photovoltaic generators and micro-wind turbines as renewable energy generators, as well as the consumption loads from different commercial and industrial sites. We show that the proposed Mo-SL-CRO is able to solve the problem providing good solutions, better than other well-known multi-objective optimization techniques, such as NSGA-II or multi-objective Harmony Search algorithm.This research was partially funded by Ministerio de Economía, Industria y Competitividad, project number TIN2017-85887-C2-1-P and TIN2017-85887-C2-2-P, and by the Comunidad Autónoma de Madrid, project number S2013ICE-2933_02

    Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids

    Full text link
    [EN] Microgrids have emerged as a solution to address new challenges in power systems with the integration of distributed energy resources (DER). Inverter-based microgrids (IBMG) need to implement proper control systems to avoid stability and reliability issues. Thus, several researchers have introduced multi-objective control strategies for distributed generation on IBMG. This paper presents a review of the different approaches that have been proposed by several authors of multi-objective control. This work describes the main features of the inverter as a key component of microgrids. Details related to accomplishing efficient generation from a control systems' view have been observed. This study addresses the potential of multi-objective control to overcome conflicting objectives with balanced results. Finally, this paper shows future trends in control objectives and discussion of the different multi-objective approaches.Gonzales-Zurita, Ó.; Clairand, J.; Peñalvo-López, E.; Escrivá-Escrivá, G. (2020). Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids. Energies. 13(13):1-29. https://doi.org/10.3390/en13133483S1291313Ross, M., Abbey, C., Bouffard, F., & Joos, G. (2015). Multiobjective Optimization Dispatch for Microgrids With a High Penetration of Renewable Generation. IEEE Transactions on Sustainable Energy, 6(4), 1306-1314. doi:10.1109/tste.2015.2428676Murty, V. V. S. N., & Kumar, A. (2020). Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Protection and Control of Modern Power Systems, 5(1). doi:10.1186/s41601-019-0147-zKatircioğlu, S., Abasiz, T., Sezer, S., & Katırcıoglu, S. (2019). Volatility of the alternative energy input prices and spillover effects: a VAR [MA]-MGARCH in BEKK approach for the Turkish economy. Environmental Science and Pollution Research, 26(11), 10738-10745. doi:10.1007/s11356-019-04531-5Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C. A., Iravani, R., Kazerani, M., … Hatziargyriou, N. D. (2014). Trends in Microgrid Control. IEEE Transactions on Smart Grid, 5(4), 1905-1919. doi:10.1109/tsg.2013.2295514Akinyele, D., Belikov, J., & Levron, Y. (2018). Challenges of Microgrids in Remote Communities: A STEEP Model Application. Energies, 11(2), 432. doi:10.3390/en11020432Benamar, A., Travaillé, P., Clairand, J.-M., & Escrivá-Escrivá, G. (2020). Non-Linear Control of a DC Microgrid for Electric Vehicle Charging Stations. International Journal on Advanced Science, Engineering and Information Technology, 10(2), 593. doi:10.18517/ijaseit.10.2.10815Lakshmi, M., & Hemamalini, S. (2018). Nonisolated High Gain DC–DC Converter for DC Microgrids. IEEE Transactions on Industrial Electronics, 65(2), 1205-1212. doi:10.1109/tie.2017.2733463Yin, C., Wu, H., Locment, F., & Sechilariu, M. (2017). Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor. Energy Conversion and Management, 132, 14-27. doi:10.1016/j.enconman.2016.11.018Chen, D., Xu, Y., & Huang, A. Q. (2017). Integration of DC Microgrids as Virtual Synchronous Machines Into the AC Grid. IEEE Transactions on Industrial Electronics, 64(9), 7455-7466. doi:10.1109/tie.2017.2674621Abhinav, S., Schizas, I. D., Ferrese, F., & Davoudi, A. (2017). Optimization-Based AC Microgrid Synchronization. IEEE Transactions on Industrial Informatics, 13(5), 2339-2349. doi:10.1109/tii.2017.2702623Liu, Z., Su, M., Sun, Y., Li, L., Han, H., Zhang, X., & Zheng, M. (2019). Optimal criterion and global/sub-optimal control schemes of decentralized economical dispatch for AC microgrid. International Journal of Electrical Power & Energy Systems, 104, 38-42. doi:10.1016/j.ijepes.2018.06.045Khatibzadeh, A., Besmi, M., Mahabadi, A., & Reza Haghifam, M. (2017). Multi-Agent-Based Controller for Voltage Enhancement in AC/DC Hybrid Microgrid Using Energy Storages. Energies, 10(2), 169. doi:10.3390/en10020169Asghar, F., Talha, M., & Kim, S. (2017). Robust Frequency and Voltage Stability Control Strategy for Standalone AC/DC Hybrid Microgrid. Energies, 10(6), 760. doi:10.3390/en10060760Lotfi, H., & Khodaei, A. (2017). Hybrid AC/DC microgrid planning. Energy, 118, 37-46. doi:10.1016/j.energy.2016.12.015Kerdphol, T., Rahman, F., & Mitani, Y. (2018). Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration. Energies, 11(4), 981. doi:10.3390/en11040981Rodrigues, Y. R., Zambroni de Souza, A. C., & Ribeiro, P. F. (2018). An inclusive methodology for Plug-in electrical vehicle operation with G2V and V2G in smart microgrid environments. International Journal of Electrical Power & Energy Systems, 102, 312-323. doi:10.1016/j.ijepes.2018.04.037Ghosh, S., & Chattopadhyay, S. (2020). Three-Loop-Based Universal Control Architecture for Decentralized Operation of Multiple Inverters in an Autonomous Grid-Interactive Microgrid. IEEE Transactions on Industry Applications, 56(2), 1966-1979. doi:10.1109/tia.2020.2964746Mohapatra, S. R., & Agarwal, V. (2020). Model Predictive Control for Flexible Reduction of Active Power Oscillation in Grid-Tied Multilevel Inverters Under Unbalanced and Distorted Microgrid Conditions. IEEE Transactions on Industry Applications, 56(2), 1107-1115. doi:10.1109/tia.2019.2957480Ziouani, I., Boukhetala, D., Darcherif, A.-M., Amghar, B., & El Abbassi, I. (2018). Hierarchical control for flexible microgrid based on three-phase voltage source inverters operated in parallel. International Journal of Electrical Power & Energy Systems, 95, 188-201. doi:10.1016/j.ijepes.2017.08.027Golshannavaz, S., & Mortezapour, V. (2018). A generalized droop control approach for islanded DC microgrids hosting parallel-connected DERs. Sustainable Cities and Society, 36, 237-245. doi:10.1016/j.scs.2017.09.038Safa, A., Madjid Berkouk, E. L., Messlem, Y., & Gouichiche, A. (2018). A robust control algorithm for a multifunctional grid tied inverter to enhance the power quality of a microgrid under unbalanced conditions. International Journal of Electrical Power & Energy Systems, 100, 253-264. doi:10.1016/j.ijepes.2018.02.042Andishgar, M. H., Gholipour, E., & Hooshmand, R. (2017). An overview of control approaches of inverter-based microgrids in islanding mode of operation. Renewable and Sustainable Energy Reviews, 80, 1043-1060. doi:10.1016/j.rser.2017.05.267Li, Z., Zang, C., Zeng, P., Yu, H., Li, S., & Bian, J. (2017). Control of a Grid-Forming Inverter Based on Sliding-Mode and Mixed H2/H{H_2}/{H_\infty } Control. IEEE Transactions on Industrial Electronics, 64(5), 3862-3872. doi:10.1109/tie.2016.2636798Hossain, M. A., Pota, H. R., Squartini, S., & Abdou, A. F. (2019). Modified PSO algorithm for real-time energy management in grid-connected microgrids. Renewable Energy, 136, 746-757. doi:10.1016/j.renene.2019.01.005Shokoohi, S., Golshannavaz, S., Khezri, R., & Bevrani, H. (2018). Intelligent secondary control in smart microgrids: an on-line approach for islanded operations. Optimization and Engineering, 19(4), 917-936. doi:10.1007/s11081-018-9382-9Safari, A., Babaei, F., & Farrokhifar, M. (2019). A load frequency control using a PSO-based ANN for micro-grids in the presence of electric vehicles. International Journal of Ambient Energy, 42(6), 688-700. doi:10.1080/01430750.2018.1563811Miveh, M. R., Rahmat, M. F., Ghadimi, A. A., & Mustafa, M. W. (2016). Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review. Renewable and Sustainable Energy Reviews, 54, 1592-1610. doi:10.1016/j.rser.2015.10.079Rokrok, E., Shafie-khah, M., & Catalão, J. P. S. (2018). Review of primary voltage and frequency control methods for inverter-based islanded microgrids with distributed generation. Renewable and Sustainable Energy Reviews, 82, 3225-3235. doi:10.1016/j.rser.2017.10.022Bouzid, A. M., Guerrero, J. M., Cheriti, A., Bouhamida, M., Sicard, P., & Benghanem, M. (2015). A survey on control of electric power distributed generation systems for microgrid applications. Renewable and Sustainable Energy Reviews, 44, 751-766. doi:10.1016/j.rser.2015.01.016Vásquez, V., Ortega, L. M., Romero, D., Ortega, R., Carranza, O., & Rodríguez, J. J. (2017). Comparison of methods for controllers design of single phase inverter operating in island mode in a microgrid: Review. Renewable and Sustainable Energy Reviews, 76, 256-267. doi:10.1016/j.rser.2017.03.060Shen, X., Wang, H., Li, J., Su, Q., & Gao, L. (2019). Distributed Secondary Voltage Control of Islanded Microgrids Based on RBF-Neural-Network Sliding-Mode Technique. IEEE Access, 7, 65616-65623. doi:10.1109/access.2019.2915509Arbab-Zavar, B., Palacios-Garcia, E., Vasquez, J., & Guerrero, J. (2019). Smart Inverters for Microgrid Applications: A Review. Energies, 12(5), 840. doi:10.3390/en12050840Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., & Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212, 340-361. doi:10.1016/j.apenergy.2017.12.048Kerdphol, T., Rahman, F., Mitani, Y., Hongesombut, K., & Küfeoğlu, S. (2017). Virtual Inertia Control-Based Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration. Sustainability, 9(5), 773. doi:10.3390/su9050773Hajiakbari Fini, M., & Hamedani Golshan, M. E. (2018). Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables. Electric Power Systems Research, 154, 13-22. doi:10.1016/j.epsr.2017.08.007Jung, J., & Villaran, M. (2017). Optimal planning and design of hybrid renewable energy systems for microgrids. Renewable and Sustainable Energy Reviews, 75, 180-191. doi:10.1016/j.rser.2016.10.061Baharizadeh, M., Karshenas, H. R., & Guerrero, J. M. (2018). An improved power control strategy for hybrid AC-DC microgrids. International Journal of Electrical Power & Energy Systems, 95, 364-373. doi:10.1016/j.ijepes.2017.08.036Serban, I., & Ion, C. P. (2017). Microgrid control based on a grid-forming inverter operating as virtual synchronous generator with enhanced dynamic response capability. International Journal of Electrical Power & Energy Systems, 89, 94-105. doi:10.1016/j.ijepes.2017.01.009Tavakoli, M., Shokridehaki, F., Marzband, M., Godina, R., & Pouresmaeil, E. (2018). A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and PEVs. Sustainable Cities and Society, 41, 332-340. doi:10.1016/j.scs.2018.05.035Cagnano, A., De Tuglie, E., & Cicognani, L. (2017). Prince — Electrical Energy Systems Lab. Electric Power Systems Research, 148, 10-17. doi:10.1016/j.epsr.2017.03.011Zhang, H., Meng, W., Qi, J., Wang, X., & Zheng, W. X. (2019). Distributed Load Sharing Under False Data Injection Attack in an Inverter-Based Microgrid. IEEE Transactions on Industrial Electronics, 66(2), 1543-1551. doi:10.1109/tie.2018.2793241Yang, L., Hu, Z., Xie, S., Kong, S., & Lin, W. (2019). Adjustable virtual inertia control of supercapacitors in PV-based AC microgrid cluster. Electric Power Systems Research, 173, 71-85. doi:10.1016/j.epsr.2019.04.011Rahman, F. S., Kerdphol, T., Watanabe, M., & Mitani, Y. (2019). Optimization of virtual inertia considering system frequency protection scheme. Electric Power Systems Research, 170, 294-302. doi:10.1016/j.epsr.2019.01.025Farrokhabadi, M., Canizares, C. A., Simpson-Porco, J. W., Nasr, E., Fan, L., Mendoza-Araya, P. A., … Reilly, J. (2020). Microgrid Stability Definitions, Analysis, and Examples. IEEE Transactions on Power Systems, 35(1), 13-29. doi:10.1109/tpwrs.2019.2925703Yoldaş, Y., Önen, A., Muyeen, S. M., Vasilakos, A. V., & Alan, İ. (2017). Enhancing smart grid with microgrids: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 72, 205-214. doi:10.1016/j.rser.2017.01.064Rajesh, K. S., Dash, S. S., Rajagopal, R., & Sridhar, R. (2017). A review on control of ac microgrid. Renewable and Sustainable Energy Reviews, 71, 814-819. doi:10.1016/j.rser.2016.12.106Marzal, S., Salas, R., González-Medina, R., Garcerá, G., & Figueres, E. (2018). Current challenges and future trends in the field of communication architectures for microgrids. Renewable and Sustainable Energy Reviews, 82, 3610-3622. doi:10.1016/j.rser.2017.10.101Singh, A., & Suhag, S. (2018). Trends in Islanded Microgrid Frequency Regulation – A Review. Smart Science, 7(2), 91-115. doi:10.1080/23080477.2018.1540380Hou, X., Sun, Y., Lu, J., Zhang, X., Koh, L. H., Su, M., & Guerrero, J. M. (2018). Distributed Hierarchical Control of AC Microgrid Operating in Grid-Connected, Islanded and Their Transition Modes. IEEE Access, 6, 77388-77401. doi:10.1109/access.2018.2882678SHI, R., ZHANG, X., HU, C., XU, H., GU, J., & CAO, W. (2017). Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids. Journal of Modern Power Systems and Clean Energy, 6(3), 482-494. doi:10.1007/s40565-017-0347-3Toub, M., Bijaieh, M. M., Weaver, W. W., III, R. D. R., Maaroufi, M., & Aniba, G. (2019). Droop Control in DQ Coordinates for Fixed Frequency Inverter-Based AC Microgrids. Electronics, 8(10), 1168. doi:10.3390/electronics8101168Shuai, Z., Fang, J., Ning, F., & Shen, Z. J. (2018). Hierarchical structure and bus voltage control of DC microgrid. Renewable and Sustainable Energy Reviews, 82, 3670-3682. doi:10.1016/j.rser.2017.10.096Agundis-Tinajero, G., Segundo-Ramírez, J., Visairo-Cruz, N., Savaghebi, M., Guerrero, J. M., & Barocio, E. (2019). Power flow modeling of islanded AC microgrids with hierarchical control. International Journal of Electrical Power & Energy Systems, 105, 28-36. doi:10.1016/j.ijepes.2018.08.002Ali, A., Li, W., Hussain, R., He, X., Williams, B., & Memon, A. (2017). Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China. Sustainability, 9(7), 1146. doi:10.3390/su9071146Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Review: Multi-objective optimization methods and application in energy saving. Energy, 125, 681-704. doi:10.1016/j.energy.2017.02.174Yazdi, F., & Hosseinian, S. H. (2019). A novel «Smart Branch» for power quality improvement in microgrids. International Journal of Electrical Power & Energy Systems, 110, 161-170. doi:10.1016/j.ijepes.2019.02.026Bassey, O., Butler-Purry, K. L., & Chen, B. (2020). Dynamic Modeling of Sequential Service Restoration in Islanded Single Master Microgrids. IEEE Transactions on Power Systems, 35(1), 202-214. doi:10.1109/tpwrs.2019.2929268Chang, E.-C. (2018). Study and Application of Intelligent Sliding Mode Control for Voltage Source Inverters. Energies, 11(10), 2544. doi:10.3390/en11102544Das, D., Gurrala, G., & Shenoy, U. J. (2018). Linear Quadratic Regulator-Based Bumpless Transfer in Microgrids. IEEE Transactions on Smart Grid, 9(1), 416-425. doi:10.1109/tsg.2016.2580159Nguyen, H. K., Khodaei, A., & Han, Z. (2018). Incentive Mechanism Design for Integrated Microgrids in Peak Ramp Minimization Problem. IEEE Transactions on Smart Grid, 9(6), 5774-5785. doi:10.1109/tsg.2017.2696903Xiao, Z., Guerrero, J. M., Shuang, J., Sera, D., Schaltz, E., & Vásquez, J. C. (2018). Flat tie-line power scheduling control of grid-connected hybrid microgrids. Applied Energy, 210, 786-799. doi:10.1016/j.apenergy.2017.07.066Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2018). A Decentralized Robust Mixed H2/HH_{{2}}/ H_{{{\infty }}} Voltage Control Scheme to Improve Small/Large-Signal Stability and FRT Capability of Islanded Multi-DER Microgrid Considering Load Disturbances. IEEE Systems Journal, 12(3), 2610-2621. doi:10.1109/jsyst.2017.2716351Panda, S. K., & Ghosh, A. (2020). A Computational Analysis of Interfacing Converters with Advanced Control Methodologies for Microgrid Application. Technology and Economics of Smart Grids and Sustainable Energy, 5(1). doi:10.1007/s40866-020-0077-xZhang, L., Chen, K., Lyu, L., & Cai, G. (2019). Research on the Operation Control Strategy of a Low-Voltage Direct Current Microgrid Based on a Disturbance Observer and Neural Network Adaptive Control Algorithm. Energies, 12(6), 1162. doi:10.3390/en12061162Zhu, K., Sun, P., Zhou, L., Du, X., & Luo, Q. (2020). Frequency-Division Virtual Impedance Shaping Control Method for Grid-Connected Inverters in a Weak and Distorted Grid. IEEE Transactions on Power Electronics, 35(8), 8116-8129. doi:10.1109/tpel.2019.2963345Samavati, E., & Mohammadi, H. R. (2019). Simultaneous voltage and current harmonics compensation in islanded/grid-connected microgrids using virtual impedance concept. Sustainable Energy, Grids and Networks, 20, 100258. doi:10.1016/j.segan.2019.100258Shi, K., Ye, H., Song, W., & Zhou, G. (2018). Virtual Inertia Control Strategy in Microgrid Based on Virtual Synchronous Generator Technology. IEEE Access, 6, 27949-27957. doi:10.1109/access.2018.2839737Fathi, A., Shafiee, Q., & Bevrani, H. (2018). Robust Frequency Control of Microgrids Using an Extended Virtual Synchronous Generator. IEEE Transactions on Power Systems, 33(6), 6289-6297. doi:10.1109/tpwrs.2018.2850880Amoateng, D. O., Al Hosani, M., Elmoursi, M. S., Turitsyn, K., & Kirtley, J. L. (2018). Adaptive Voltage and Frequency Control of Islanded Multi-Microgrids. IEEE Transactions on Power Systems, 33(4), 4454-4465. doi:10.1109/tpwrs.2017.2780986Sopinka, A., & Pitt, L. (2013). British Columbia Electricity Supply Gap Strategy: A Redefinition of Self-Sufficiency. The Electricity Journal, 26(3), 81-88. doi:10.1016/j.tej.2013.03.003Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2018). Decentralized Sliding Mode Control of WG/PV/FC Microgrids Under Unbalanced and Nonlinear Load Conditions for On- and Off-Grid Modes. IEEE Systems Journal, 12(4), 3108-3119. doi:10.1109/jsyst.2017.2761792Gholami, S., Saha, S., & Aldeen, M. (2018). Robust multiobjective control method for power sharing among distributed energy resources in islanded microgrids with unbalanced and nonlinear loads. International Journal of Electrical Power & Energy Systems, 94, 321-338. doi:10.1016/j.ijepes.2017.07.012Mousazadeh Mousavi, S. Y., Jalilian, A., Savaghebi, M., & Guerrero, J. M. (2018). Autonomous Control of Current- and Voltage-Controlled DG Interface Inverters for Reactive Power Sharing and Harmonics Compensation in Islanded Microgrids. IEEE Transactions on Power Electronics, 33(11), 9375-9386. doi:10.1109/tpel.2018.2792780Fani, B., Zandi, F., & Karami-Horestani, A. (2018). An enhanced decentralized reactive power sharing strategy for inverter-based microgrid. International Journal of Electrical Power & Energy Systems, 98, 531-542. doi:10.1016/j.ijepes.2017.12.023Khayat, Y., Naderi, M., Shafiee, Q., Batmani, Y., Fathi, M., Guerrero, J. M., & Bevrani, H. (2019). Decentralized Optimal Frequency Control in Autonomous Microgrids. IEEE Transactions on Power Systems, 34(3), 2345-2353. doi:10.1109/tpwrs.2018.2889671Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2018). Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. IEEE Transactions on Smart Grid, 9(2), 530-543. doi:10.1109/tsg.2016.2555245Alyazidi, N. M., Mahmoud, M. S., & Abouheaf, M. I. (2018). Adaptive critics based cooperative control scheme for islanded Microgrids. Neurocomputing, 272, 532-541. doi:10.1016/j.neucom.2017.07.027Buduma, P., & Panda, G. (2018). Robust nested loop control scheme for LCL‐filtered inverter‐based DG unit in grid‐connected and islanded modes. IET Renewable Power Generation, 12(11), 1269-1285. doi:10.1049/iet-rpg.2017.0803Batiyah, S., Sharma, R., Abdelwahed, S., & Zohrabi, N. (2020). An MPC-based power management of standalone DC microgrid with energy storage. International Journal of Electrical Power & Energy Systems, 120, 105949. doi:10.1016/j.ijepes.2020.105949Baghaee, H. R., Mirsalim, M., Gharehpetan, G. B., & Talebi, H. A. (2018). Nonlinear Load Sharing and Voltage Compensation of Microgrids Based on Harmonic Power-Flow Calculations Using Radial Basis Function Neural Networks. IEEE Systems Journal, 12(3), 2749-2759. doi:10.1109/jsyst.2016.2645165Benhalima, S., Miloud, R., & Chandra, A. (2018). Real-Time Implementation of Robust Control Strategies Based on Sliding Mode Control for Standalone Microgrids Supplying Non-Linear Loads. Energies, 11(10), 2590. doi:10.3390/en11102590California Carbon Market Watch: A Comprehensive Analysis of the Golden State’s Cap-and-Trade Program, Year One—2012–2013. 2014https://www.issuelab.org/resource/california-carbon-market-watch-a-comprehensive-analysis-of-the-golden-state-s-cap-and-trade-program-year-one-2012-2013.htmlExploring the Best Possible Trade-Off between Competing Objectives: Identifying the Pareto Fronthttps://pythonhealthcare.org/2018/09/27/93-exploring-the-best-possible-trade-off-between-competing-objectives-identifying-the-pTeekaraman, Y., Kuppusamy, R., & Nikolovski, S. (2019). Solution for Voltage and Frequency Regulation in Standalone Microgrid using Hybrid Multiobjective Symbiotic Organism Search Algorithm. Energies, 12(14), 2812. doi:10.3390/en12142812Zeng, Z., Li, H., Tang, S., Yang, H., & Zhao, R. (2016). Multi‐objective control of multi‐functional grid‐connected inverter for renewable energy integration and power quality service. IET Power Electronics, 9(4), 761-770. doi:10.1049/iet-pel.2015.0317Wu, Y., Guerrero, J. M., Vasquez, J. C., & Wu, Y. (2019). Bumpless Optimal Control over Multi-Objective Microgrids with Mode-Dependent Controllers. Energies, 12(19), 3619. doi:10.3390/en12193619Sedighizadeh, M., Esmaili, M., & Eisapour-Moarref, A. (2017). Voltage and frequency r

    Optimal Operation of a Distributed Generation Microgrid based on the Multi-Objective Genetic Algorithms

    Get PDF
    This document describes the application of multi-objective genetic algorithms as techniques and tools to optimize generation and distribution in small microgrids. In this way, genetic algorithms have been used for the allocation of distributed generation to reduce losses and improve the voltage profile. The IEEE14 network has been taken as a study and analysis model. This smart grid has 14 nodes and integrates several generation units, both conventional and renewable, transformers, and multiple loads. In this way, a multi-objective metaheuristic algorithm is proposed with the purpose of planning the power distribution grid based on a series of conditions such as the optimal generation configuration, the minimization of power losses in the lines, power transfer capacity, the reduction of CO2 emissions, and the optimization of the benefits obtained in renewable generation. The overall purpose is the development of an intelligent microgrid management system that is capable of determining the optimal configuration, by estimating demand, energy costs, and operating costs. © 2022, European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ). All rights reserved

    Optimal Economic Schedule for a Network of Microgrids With Hybrid Energy Storage System Using Distributed Model Predictive Control

    Get PDF
    Artículo Open Access en el sitio web el editor. Pago por publicar en abierto.In this paper, an optimal procedure for the economic schedule of a network of interconnected microgrids with hybrid energy storage system is carried out through a control algorithm based on distributed model predictive control (DMPC). The algorithm is specifically designed according to the criterion of improving the cost function of each microgrid acting as a single system through the network mode operation. The algorithm allows maximum economical benefit of the microgrids, minimizing the degradation causes of each storage system, and fulfilling the different system constraints. In order to capture both continuous/discrete dynamics and switching between different operating conditions, the plant is modeled with the framework of mixed logic dynamic. The DMPC problem is solved with the use of mixed integer linear programming using a piecewise formulation, in order to linearize a mixed integer quadratic programming problem.Ministerio de Economía, Industria y Competitivadad DPI2016-78338-RComisión Europea 0076-AGERAR-6-

    PHOTOVOLTAIC PRODUCTION MANAGEMENT IN STOCHASTIC OPTIMIZED MICROGRIDS

    Get PDF
    The microgrids are composed of small scale fueled generation capacities, renewable energy sources, storage energy systems, controllable loads, and autonomously can connect or disconnect from the mains supply. The microgrids can operate connected to the upstream main grid, or in an islanded operation mode following a large perturbation in the upstream grid. The microgrid analyzed in this paper is composed of a photovoltaic system, a thermal engine, an electrochemical storage system, critical and interruptible loads. As backup generation is considered a classical generation engine and a small scale storage unit. The autonomous switching between grid-connected and islanding operation modes can occur, under an excess/deficit of generation and function of the electricity market price. The paper deals with an optimization model for minimizing the microgrid operation costs under intermittent generation and variable demand function of microgrid operation constrains. The optimization model is tested on a 24 hours horizon. The gridconnected optimized operation accounts also the exchanged power with the upstream grid function of the electricity price within the public network
    corecore