201 research outputs found

    Green Vehicle Routing Optimization Based on Carbon Emission and Multiobjective Hybrid Quantum Immune Algorithm

    Get PDF
    © 2018 Xiao-Hong Liu et al. Green Vehicle Routing Optimization Problem (GVROP) is currently a scientific research problem that takes into account the environmental impact and resource efficiency. Therefore, the optimal allocation of resources and the carbon emission in GVROP are becoming more and more important. In order to improve the delivery efficiency and reduce the cost of distribution requirements through intelligent optimization method, a novel multiobjective hybrid quantum immune algorithm based on cloud model (C-HQIA) is put forward. Simultaneously, the computational results have proved that the C-HQIA is an efficient algorithm for the GVROP. We also found that the parameter optimization of the C-HQIA is related to the types of artificial intelligence algorithms. Consequently, the GVROP and the C-HQIA have important theoretical and practical significance

    Multi-objective tools for the vehicle routing problem with time windows

    Get PDF
    Most real-life problems involve the simultaneous optimisation of two or more, usually conflicting, objectives. Researchers have put a continuous effort into solving these problems in many different areas, such as engineering, finance and computer science. Over time, thanks to the increase in processing power, researchers have created methods which have become increasingly sophisticated. Most of these methods have been based on the notion of Pareto dominance, which assumes, sometimes erroneously, that the objectives have no known ranking of importance. The Vehicle Routing Problem with Time Windows (VRPTW) is a logistics problem which in real-life applications appears to be multi-objective. This problem consists of designing the optimal set of routes to serve a number of customers within certain time slots. Despite this problem’s high applicability to real-life domains (e.g. waste collection, fast-food delivery), most research in this area has been conducted with hand-made datasets. These datasets sometimes have a number of unrealistic features (e.g. the assumption that one unit of travel time corresponds to one unit of travel distance) and are therefore not adequate for the assessment of optimisers. Furthermore, very few studies have focused on the multi-objective nature of the VRPTW. That is, very few have studied how the optimisation of one objective affects the others. This thesis proposes a number of novel tools (methods + dataset) to address the above- mentioned challenges: 1) an agent-based framework for cooperative search, 2) a novel multi-objective ranking approach, 3) a new dataset for the VRPTW, 4) a study of the pair-wise relationships between five common objectives in VRPTW, and 5) a simplified Multi-objective Discrete Particle Swarm Optimisation for the VRPTW

    Optimización del diseño estructural de pavimentos asfálticos para calles y carreteras

    Get PDF
    gráficos, tablasThe construction of asphalt pavements in streets and highways is an activity that requires optimizing the consumption of significant economic and natural resources. Pavement design optimization meets contradictory objectives according to the availability of resources and users’ needs. This dissertation explores the application of metaheuristics to optimize the design of asphalt pavements using an incremental design based on the prediction of damage and vehicle operating costs (VOC). The costs are proportional to energy and resource consumption and polluting emissions. The evolution of asphalt pavement design and metaheuristic optimization techniques on this topic were reviewed. Four computer programs were developed: (1) UNLEA, a program for the structural analysis of multilayer systems. (2) PSO-UNLEA, a program that uses particle swarm optimization metaheuristic (PSO) for the backcalculation of pavement moduli. (3) UNPAVE, an incremental pavement design program based on the equations of the North American MEPDG and includes the computation of vehicle operating costs based on IRI. (4) PSO-PAVE, a PSO program to search for thicknesses that optimize the design considering construction and vehicle operating costs. The case studies show that the backcalculation and structural design of pavements can be optimized by PSO considering restrictions in the thickness and the selection of materials. Future developments should reduce the computational cost and calibrate the pavement performance and VOC models. (Texto tomado de la fuente)La construcción de pavimentos asfálticos en calles y carreteras es una actividad que requiere la optimización del consumo de cuantiosos recursos económicos y naturales. La optimización del diseño de pavimentos atiende objetivos contradictorios de acuerdo con la disponibilidad de recursos y las necesidades de los usuarios. Este trabajo explora el empleo de metaheurísticas para optimizar el diseño de pavimentos asfálticos empleando el diseño incremental basado en la predicción del deterioro y los costos de operación vehicular (COV). Los costos son proporcionales al consumo energético y de recursos y las emisiones contaminantes. Se revisó la evolución del diseño de pavimentos asfálticos y el desarrollo de técnicas metaheurísticas de optimización en este tema. Se desarrollaron cuatro programas de computador: (1) UNLEA, programa para el análisis estructural de sistemas multicapa. (2) PSO-UNLEA, programa que emplea la metaheurística de optimización con enjambre de partículas (PSO) para el cálculo inverso de módulos de pavimentos. (3) UNPAVE, programa de diseño incremental de pavimentos basado en las ecuaciones de la MEPDG norteamericana, y el cálculo de costos de construcción y operación vehicular basados en el IRI. (4) PSO-PAVE, programa que emplea la PSO en la búsqueda de espesores que permitan optimizar el diseño considerando los costos de construcción y de operación vehicular. Los estudios de caso muestran que el cálculo inverso y el diseño estructural de pavimentos pueden optimizarse mediante PSO considerando restricciones en los espesores y la selección de materiales. Los desarrollos futuros deben enfocarse en reducir el costo computacional y calibrar los modelos de deterioro y COV.DoctoradoDoctor en Ingeniería - Ingeniería AutomáticaDiseño incremental de pavimentosEléctrica, Electrónica, Automatización Y Telecomunicacione

    Assessing the Performance of a Particle Swarm Optimization Mobility Algorithm in a Hybrid Wi-Fi/LoRa Flying Ad Hoc Network

    Get PDF
    Research on Flying Ad-Hoc Networks (FANETs) has increased due to the availability of Unmanned Aerial Vehicles (UAVs) and the electronic components that control and connect them. Many applications, such as 3D mapping, construction inspection, or emergency response operations could benefit from an application and adaptation of swarm intelligence-based deployments of multiple UAVs. Such groups of cooperating UAVs, through the use of local rules, could be seen as network nodes establishing an ad-hoc network for communication purposes. One FANET application is to provide communication coverage over an area where communication infrastructure is unavailable. A crucial part of a FANET implementation is computing the optimal position of UAVs to provide connectivity with ground nodes while maximizing geographic span. To achieve optimal positioning of FANET nodes, an adaptation of the Particle Swarm Optimization (PSO) algorithm is proposed. A 3D mobility model is defined by adapting the original PSO algorithm and combining it with a fixed-trajectory initial flight. A Long Range (LoRa) mesh network is used for air-to-air communication, while a Wi-Fi network provides air-to-ground communication to several ground nodes with unknown positions. The optimization problem has two objectives: maximizing coverage to ground nodes and maintaining an end-to-end communication path to a control station, through the UAV mesh. The results show that the hybrid mobility approach performs similarly to the fixed trajectory flight regarding coverage, and outperforms fixed trajectory and PSO-only algorithms in both path maintenance and overall network efficiency, while using fewer UAVs

    Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model

    Get PDF
    This article introduces a sustainable integrated bi-objective location-routing model, its two-phase solution approach and an analysis procedure for the distribution side of three-echelon logistics networks. The mixed-integer programming model captures several real-world factors by introducing an additional objective function and a set of new constraints in the model that outbound logistics channels find difficult to reconcile. The sustainable model minimises CO2 emissions from transportation and total costs incurred in facilities and the transportation channels. Design of Experiment (DoE) is integrated to the meta-heuristic based optimiser to solve the model in two phases. The DoE-guided solution approach enables the optimiser to offer the best stable solution space by taking out solutions with poor design features from the space and refining the feasible solutions using a convergence algorithm thereby selecting the realistic results. Several alternative solution scenarios are obtained by prioritising and ranking the realistic solution sets through a multi-attribute decision analysis tool, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The robust model provides the decision maker the ability to take decisions on sustainable open alternative optimal routes. The outcomes of this research provide theoretical and methodological contributions, in terms of integrated bi-objective location-routing model and its two-phase DoE-guided meta-heuristic solution approach, for the distribution side of three-echelon logistics networks
    corecore