129 research outputs found

    Quasi-induced exposure method for pedestrian safety at signalized intersections

    Get PDF
    postprin

    Generalized Partial Least Squares Approach for Nominal Multinomial Logit Regression Models with a Functional Covariate

    Get PDF
    Functional Data Analysis (FDA) has attracted substantial attention for the last two decades. Within FDA, classifying curves into two or more categories is consistently of interest to scientists, but multi-class prediction within FDA is challenged in that most classiļ¬cation tools have been limited to binary response applications. The functional logistic regression (FLR) model was developed to forecast a binary response variable in the functional case. In this study, a functional nominal multinomial logit regression (F-NM-LR) model was developed that shifts the FLR model into a multiple logit model. However, the model generates inaccurate parameter function estimates due to multicollinearity in the design matrix. A generalized partial least squares (GPLS) approach with cubic B-spline basis expansions was developed to address the multicollinearity and high dimensionality problems that preclude accurate estimates and curve discrimination with the F-NM-LR model. The GPLS method extends partial least squares (PLS) and improves upon current methodology by introducing a component selection criterion that reconstructs the parameter function with fewer predictors. The GPLS regression estimates are derived via Iteratively ReWeighted Partial Least Squares (IRWPLS), deļ¬ning a set of uncorrelated latent variables to use as predictors for the F-GPLS-NM-LR model. This methodology was compared to the classic alternative estimation method of principal component regression (PCR) in a simulation study. The performance of the proposed methodology was tested via simulations and applications on a spectrometric dataset. The results indicate that the GPLS method performs well in multi-class prediction with respect to the F-NM-LR model. The main diļ¬€erence between the two approaches was that PCR usually requires more components than GPLS to achieve similar accuracy of parameter function estimates of the F-GPLS-NM-LR model. The results of this research imply that the GPLS method is preferable to the F-NM-LR model, and it is a useful contribution to FDA techniques. This method may be particularly appropriate for practical situations where accurate prediction of a response variable with fewer components is a priority

    Econometrics: A bird's eye view

    Get PDF
    As a unified discipline, econometrics is still relatively young and has been transforming and expanding very rapidly over the past few decades. Major advances have taken place in the analysis of cross sectional data by means of semi-parametric and non-parametric techniques. Heterogeneity of economic relations across individuals, firms and industries is increasingly acknowledge and attempts have been made to take them into account either by integrating out their effects or by modeling the sources of heterogeneity when suitable panel data exists. The counterfactual considerations that underlie policy analysis and treatment evaluation have been given a more satisfactory foundation. New time series econometric techniques have been developed and employed extensively in the areas of macroeconometrics and finance. Non-linear econometric techniques are used increasingly in the analysis of cross section and time series observations. Applications of Bayesian techniques to econometric problems have been given new impetus largely thanks to advances in computer power and computational techniques. The use of Bayesian techniques have in turn provided the investigators with a unifying framework where the tasks and forecasting, decision making, model evaluation and learning can be considered as parts of the same interactive and iterative process; thus paving the way for establishing the foundation of the "real time econometrics". This paper attempts to provide an overview of some of these developments

    Econometrics: A Birdā€™s Eye View

    Get PDF
    As a unified discipline, econometrics is still relatively young and has been transforming and expanding very rapidly over the past few decades. Major advances have taken place in the analysis of cross sectional data by means of semi-parametric and non-parametric techniques. Heterogeneity of economic relations across individuals, firms and industries is increasingly acknowledged and attempts have been made to take them into account either by integrating out their effects or by modeling the sources of heterogeneity when suitable panel data exists. The counterfactual considerations that underlie policy analysis and treatment evaluation have been given a more satisfactory foundation. New time series econometric techniques have been developed and employed extensively in the areas of macroeconometrics and finance. Non-linear econometric techniques are used increasingly in the analysis of cross section and time series observations. Applications of Bayesian techniques to econometric problems have been given new impetus largely thanks to advances in computer power and computational techniques. The use of Bayesian techniques have in turn provided the investigators with a unifying framework where the tasks of forecasting, decision making, model evaluation and learning can be considered as parts of the same interactive and iterative process; thus paving the way for establishing the foundation of ā€œreal time econometricsā€. This paper attempts to provide an overview of some of these developments.history of econometrics, microeconometrics, macroeconometrics, Bayesian econometrics, nonparametric and semi-parametric analysis
    • ā€¦
    corecore