6 research outputs found

    Optimal Cooperative Spectrum Sensing for Cognitive Radio

    Get PDF
    The rapid increasing interest in wireless communication has led to the continuous development of wireless devices and technologies. The modern convergence and interoperability of wireless technologies has further increased the amount of services that can be provided, leading to the substantial demand for access to the radio frequency spectrum in an efficient manner. Cognitive radio (CR) an innovative concept of reusing licensed spectrum in an opportunistic manner promises to overcome the evident spectrum underutilization caused by the inflexible spectrum allocation. Spectrum sensing in an unswerving and proficient manner is essential to CR. Cooperation amongst spectrum sensing devices are vital when CR systems are experiencing deep shadowing and in a fading environment. In this thesis, cooperative spectrum sensing (CSS) schemes have been designed to optimize detection performance in an efficient and implementable manner taking into consideration: diversity performance, detection accuracy, low complexity, and reporting channel bandwidth reduction. The thesis first investigates state of the art spectrums sensing algorithms in CR. Comparative analysis and simulation results highlights the different pros, cons and performance criteria of a practical CSS scheme leading to the problem formulation of the thesis. Motivated by the problem of diversity performance in a CR network, the thesis then focuses on designing a novel relay based CSS architecture for CR. A major cooperative transmission protocol with low complexity and overhead - Amplify and Forward (AF) cooperative protocol and an improved double energy detection scheme in a single relay and multiple cognitive relay networks are designed. Simulation results demonstrated that the developed algorithm is capable of reducing the error of missed detection and improving detection probability of a primary user (PU). To improve spectrum sensing reliability while increasing agility, a CSS scheme based on evidence theory is next considered in this thesis. This focuses on a data fusion combination rule. The combination of conflicting evidences from secondary users (SUs) with the classical Dempster Shafter (DS) theory rule may produce counter-intuitive results when combining SUs sensing data leading to poor CSS performance. In order to overcome and minimise the effect of the counter-intuitive results, and to enhance performance of the CSS system, a novel state of the art evidence based decision fusion scheme is developed. The proposed approach is based on the credibility of evidence and a dissociability degree measure of the SUs sensing data evidence. Simulation results illustrate the proposed scheme improves detection performance and reduces error probability when compared to other related evidence based schemes under robust practcial scenarios. Finally, motivated by the need for a low complexity and minmum bandwidth reporting channels which can be significant in high data rate applications, novel CSS quantization schemes are proposed. Quantization methods are considered for a maximum likelihood estimation (MLE) and an evidence based CSS scheme. For the MLE based CSS, a novel uniform and optimal output entropy quantization scheme is proposed to provide fewer overhead complexities and improved throughput. While for the Evidence based CSS scheme, a scheme that quantizes the basic probability Assignment (BPA) data at each SU before being sent to the FC is designed. The proposed scheme takes into consideration the characteristics of the hypothesis distribution under diverse signal-to-noise ratio (SNR) of the PU signal based on the optimal output entropy. Simulation results demonstrate that the proposed quantization CSS scheme improves sensing performance with minimum number of quantized bits when compared to other related approaches

    Research and Technology, 1995

    Get PDF
    This report presents some of the challenging research and technology accomplished at NASA Ames Research Center during FY95. The accomplishments address almost all goals of NASA's four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Sciences, Human Exploration and Development of Space, and Mission to Planet Earth. The report's primary purpose is to inform stakeholders, customers, partners, colleagues, contractors, employees, and the American people in general about the scope and diversity of the research and technology activities. Additionally, the report will enable the reader to know how these goals are being addressed

    Research and Technology Objectives and Plans Summary (RTOPS)

    Get PDF
    A compilation of summary portions of each of the Research and Technology Objectives and Plans (RTOPS) used for management review and control of research currently in progress throughout NASA is presented. Subject, technical monitors, responsible NASA organization, and RTOP number indexes are included

    24th International Conference on Information Modelling and Knowledge Bases

    Get PDF
    In the last three decades information modelling and knowledge bases have become essentially important subjects not only in academic communities related to information systems and computer science but also in the business area where information technology is applied. The series of European ā€“ Japanese Conference on Information Modelling and Knowledge Bases (EJC) originally started as a co-operation initiative between Japan and Finland in 1982. The practical operations were then organised by professor Ohsuga in Japan and professors Hannu Kangassalo and Hannu Jaakkola in Finland (Nordic countries). Geographical scope has expanded to cover Europe and also other countries. Workshop characteristic - discussion, enough time for presentations and limited number of participants (50) / papers (30) - is typical for the conference. Suggested topics include, but are not limited to: 1. Conceptual modelling: Modelling and specification languages; Domain-specific conceptual modelling; Concepts, concept theories and ontologies; Conceptual modelling of large and heterogeneous systems; Conceptual modelling of spatial, temporal and biological data; Methods for developing, validating and communicating conceptual models. 2. Knowledge and information modelling and discovery: Knowledge discovery, knowledge representation and knowledge management; Advanced data mining and analysis methods; Conceptions of knowledge and information; Modelling information requirements; Intelligent information systems; Information recognition and information modelling. 3. Linguistic modelling: Models of HCI; Information delivery to users; Intelligent informal querying; Linguistic foundation of information and knowledge; Fuzzy linguistic models; Philosophical and linguistic foundations of conceptual models. 4. Cross-cultural communication and social computing: Cross-cultural support systems; Integration, evolution and migration of systems; Collaborative societies; Multicultural web-based software systems; Intercultural collaboration and support systems; Social computing, behavioral modeling and prediction. 5. Environmental modelling and engineering: Environmental information systems (architecture); Spatial, temporal and observational information systems; Large-scale environmental systems; Collaborative knowledge base systems; Agent concepts and conceptualisation; Hazard prediction, prevention and steering systems. 6. Multimedia data modelling and systems: Modelling multimedia information and knowledge; Contentbased multimedia data management; Content-based multimedia retrieval; Privacy and context enhancing technologies; Semantics and pragmatics of multimedia data; Metadata for multimedia information systems. Overall we received 56 submissions. After careful evaluation, 16 papers have been selected as long paper, 17 papers as short papers, 5 papers as position papers, and 3 papers for presentation of perspective challenges. We thank all colleagues for their support of this issue of the EJC conference, especially the program committee, the organising committee, and the programme coordination team. The long and the short papers presented in the conference are revised after the conference and published in the Series of ā€œFrontiers in Artificial Intelligenceā€ by IOS Press (Amsterdam). The books ā€œInformation Modelling and Knowledge Basesā€ are edited by the Editing Committee of the conference. We believe that the conference will be productive and fruitful in the advance of research and application of information modelling and knowledge bases. Bernhard Thalheim Hannu Jaakkola Yasushi Kiyok

    Research and Technology Objectives and Plans Summary (RTOPS)

    Get PDF
    This publication represents the NASA research and technology program for FY 1985. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP number

    Faculty Publications and Creative Works 2002

    Get PDF
    Introduction One of the ways in which we recognize our faculty at the University of New Mexico is through Faculty Publications & Creative Works. An annual publication, it highlights our faculty\u27s scholarly and creative activities and achievements and serves as a compendium of UNM faculty efforts during the 2001 calendar year. Faculty Publications & Creative Works strives to illustrate the depth and breadth of research activities performed throughout our University\u27s laboratories, studios and classrooms. We believe that the communication of individual research is a significant method of sharing concepts and thoughts and ultimately inspiring the birth of new ideas. In support of this, UNM faculty during 2002 produced over 2,278 works, including 1,735 scholarly papers and articles, 64 books, 195 book chapters, 174 reviews, 84 creative works and 26 patented works. We are proud of the accomplishments of our faculty which are in part reflected in this book, which illustrates the diversity of intellectual pursuits in support of research and education at the University of New Mexico. Terry Yates Vice Provost for Researc
    corecore