20 research outputs found

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio

    Citywide Estimation of Traffic Dynamics via Sparse GPS Traces

    Get PDF
    Traffic congestion is a perpetual challenge in metropolitan areas around the world. The ability to understand traffic dynamics is thus critical to effective traffic control and management. However, estimation of traffic conditions over a large-scale road network has proven to be a challenging task for two reasons: first, traffic conditions are intrinsically stochastic; second, the availability and quality of traffic data vary to a great extent. Traditional traffic monitoring systems that exist mostly on major roads and highways are insufficient to recover the traffic conditions for an entire network. Recent advances in GPS technology and the resulting rich data sets offer new opportunities to improve upon such traditional means, by providing much broader coverage of road networks. Despite that, such data are limited by their spatial-temporal sparsity in practice. To address these issues, we have developed a novel framework to estimate travel times, traversed paths, and missing values over a large-scale road network using sparse GPS traces. Our method consists of two phases. In the first phase, we adopt the shortest travel time criterion based on Wardrop\u27s Principles in the map-matching process. With an improved traveltime allocation technique, we have achieved up to 52.5% relative error reduction in network travel times compared to a state-of-the-art method [1]. In the second phase, we estimate missing values using Compressed Sensing algorithm, thereby reducing the number of required measurements by 94.64%

    Counting and Classification of Highway Vehicles by Regression Analysis

    Get PDF
    In this paper, we describe a novel algorithm that counts and classifies highway vehicles based on regression analysis. This algorithm requires no explicit segmentation or tracking of individual vehicles, which is usually an important part of many existing algorithms. Therefore, this algorithm is particularly useful when there are severe occlusions or vehicle resolution is low, in which extracted features are highly unreliable. There are mainly two contributions in our proposed algorithm. First, a warping method is developed to detect the foreground segments that contain unclassified vehicles. The common used modeling and tracking (e.g., Kalman filtering) of individual vehicles are not required. In order to reduce vehicle distortion caused by the foreshortening effect, a nonuniform mesh grid and a projective transformation are estimated and applied during the warping process. Second, we extract a set of low-level features for each foreground segment and develop a cascaded regression approach to count and classify vehicles directly, which has not been used in the area of intelligent transportation systems. Three different regressors are designed and evaluated. Experiments show that our regression-based algorithm is accurate and robust for poor quality videos, from which many existing algorithms could fail to extract reliable features

    A vision transformer approach for traffic congestion prediction in urban areas

    Get PDF
    Traffic problems continue to deteriorate because of the increasing population in urban areas that rely on many modes of transportation, the transportation infrastructure has achieved considerable strides in the last several decades. This has led to an increase in congestion control difficulties, which directly affect citizens through air pollution, fuel consumption, traffic law breaches, noise pollution, accidents, and loss of time. Traffic prediction is an essential aspect of an intelligent transportation system in smart cities because it helps reduce traffic congestion. This article aims to design and enforce a traffic prediction scheme that is efficient and accurate in forecasting traffic flow. Available traffic flow prediction methods are still unsuitable for real-world applications. This fact motivated us to work on a traffic flow forecasting issue using Vision Transformers (VTs). In this work, VTs were used in conjunction with Convolutional neural networks (CNNs) to predict traffic congestion in urban spaces on a city-wide scale. In our proposed architecture, a traffic image is fed to the CNN, which generates feature maps. These feature maps are then fed to the VT, which employs the dual techniques of tokenization and projection. Tokenization is used to convert features into tokens containing Vision information, which are then sent to projection, where they are transformed into feature maps and ultimately delivered to LSTM. The experimental results demonstrate that the vision transformer prediction method based on Spatio-temporal characteristics is an excellent way of predicting traffic flow, particularly during anomalous traffic situations. The proposed technology surpasses traditional methods in terms of precision, accuracy and recall and aids in energy conservation. Through rerouting, the proposed work will benefit travellers and reduce fuel use

    2019 EC3 July 10-12, 2019 Chania, Crete, Greece

    Get PDF

    Simulation and Learning for Urban Mobility: City-scale Traffic Reconstruction and Autonomous Driving

    Get PDF
    Traffic congestion has become one of the most critical issues worldwide. The costs due to traffic gridlock and jams are approximately $160 billion in the United States, more than £13 billion in the United Kingdom, and over one trillion dollars across the globe annually. As more metropolitan areas will experience increasingly severe traffic conditions, the ability to analyze, understand, and improve traffic dynamics becomes critical. This dissertation is an effort towards achieving such an ability. I propose various techniques combining simulation and machine learning to tackle the problem of traffic from two perspectives: city-scale traffic reconstruction and autonomous driving. Traffic, by its definition, appears in an aggregate form. In order to study it, we have to take a holistic approach. I address the problem of efficient and accurate estimation and reconstruction of city-scale traffic. The reconstructed traffic can be used to analyze congestion causes, identify network bottlenecks, and experiment with novel transport policies. City-scale traffic estimation and reconstruction have proven to be challenging for two particular reasons: first, traffic conditions that depend on individual drivers are intrinsically stochastic; second, the availability and quality of traffic data are limited. Traditional traffic monitoring systems that exist on highways and major roads can not produce sufficient data to recover traffic at scale. GPS data, in contrast, provide much broader coverage of a city thus are more promising sources for traffic estimation and reconstruction. However, GPS data are limited by their spatial-temporal sparsity in practice. I develop a framework to statically estimate and dynamically reconstruct traffic over a city-scale road network by addressing the limitations of GPS data. Traffic is also formed of individual vehicles propagating through space and time. If we can improve the efficiency of them, collectively, we can improve traffic dynamics as a whole. Recent advancements in automation and its implication for improving the safety and efficiency of the traffic system have prompted widespread research of autonomous driving. While exciting, autonomous driving is a complex task, consider the dynamics of an environment and the lack of accurate descriptions of a desired driving behavior. Learning a robust control policy for driving remains challenging as it requires an effective policy architecture, an efficient learning mechanism, and substantial training data covering a variety of scenarios, including rare cases such as accidents. I develop a framework, named ADAPS (Autonomous Driving via Principled Simulations), for producing robust control policies for autonomous driving. ADAPS consists of two simulation platforms which are used to generate and analyze simulated accidents while automatically generating labeled training data, and a hierarchical control policy which takes into account the features of driving behaviors and road conditions. ADAPS also represents a more efficient online learning mechanism compared to previous techniques, in which the number of iterations required to learn a robust control policy is reduced.Doctor of Philosoph
    corecore