16 research outputs found

    Soft computing for tool life prediction a manufacturing application of neural - fuzzy systems

    Get PDF
    Tooling technology is recognised as an element of vital importance within the manufacturing industry. Critical tooling decisions related to tool selection, tool life management, optimal determination of cutting conditions and on-line machining process monitoring and control are based on the existence of reliable detailed process models. Among the decisive factors of process planning and control activities, tool wear and tool life considerations hold a dominant role. Yet, both off-line tool life prediction, as well as real tune tool wear identification and prediction are still issues open to research. The main reason lies with the large number of factors, influencing tool wear, some of them being of stochastic nature. The inherent variability of workpiece materials, cutting tools and machine characteristics, further increases the uncertainty about the machining optimisation problem. In machining practice, tool life prediction is based on the availability of data provided from tool manufacturers, machining data handbooks or from the shop floor. This thesis recognises the need for a data-driven, flexible and yet simple approach in predicting tool life. Model building from sample data depends on the availability of a sufficiently rich cutting data set. Flexibility requires a tool-life model with high adaptation capacity. Simplicity calls for a solution with low complexity and easily interpretable by the user. A neural-fuzzy systems approach is adopted, which meets these targets and predicts tool life for a wide range of turning operations. A literature review has been carried out, covering areas such as tool wear and tool life, neural networks, frizzy sets theory and neural-fuzzy systems integration. Various sources of tool life data have been examined. It is concluded that a combined use of simulated data from existing tool life models and real life data is the best policy to follow. The neurofuzzy tool life model developed is constructed by employing neural network-like learning algorithms. The trained model stores the learned knowledge in the form of frizzy IF-THEN rules on its structure, thus featuring desired transparency. Low model complexity is ensured by employing an algorithm which constructs a rule base of reduced size from the available data. In addition, the flexibility of the developed model is demonstrated by the ease, speed and efficiency of its adaptation on the basis of new tool life data. The development of the neurofuzzy tool life model is based on the Fuzzy Logic Toolbox (vl.0) of MATLAB (v4.2cl), a dedicated tool which facilitates design and evaluation of fuzzy logic systems. Extensive results are presented, which demonstrate the neurofuzzy model predictive performance. The model can be directly employed within a process planning system, facilitating the optimisation of turning operations. Recommendations aremade for further enhancements towards this direction

    Methodology for predicting and/or compensating the behavior of optical frequency comb

    Get PDF
    RESUMEN: Optical frequency comb spectrum can change its behavior due to temperature fluctuations, normal dispersion, and mechanical vibrations. Such limitations can affect the peak power and wavelength separation of comb lines. In the propagation through single−mode fiber, the linear and non−linear phenomena can modify spectral shape, phase shifts and flatness of spectrum. To find a strategy of compensation, the PhD thesis is focused on a prediction methodology based on fuzzy cellular automata, intuitionistic fuzzy sets and fuzzy entropy measures. The research work proposes a predictor called intuitionistic fuzzy cellular automata based on mean vector and a validation measure called general intuitionistic fuzzy entropy based on adequacy and non−adequacy. In the accomplished experiments, the method was used in three experiments: mode−locked lasers, cascaded intensity modulators−Mach Zehnder modulators, and microresonator ring. The obtained results showed that the power and phase distortions were reduced by using a pulse shaper, where the method was programmed. In addition, the stability and/or instability of spectrum were found for the microresonator ring

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems

    Get PDF
    Fault detection, control, and forecasting have a vital role in renewable energy systems (Photovoltaics (PV) and wind turbines (WTs)) to improve their productivity, ef?ciency, and safety, and to avoid expensive maintenance. For instance, the main crucial and challenging issue in solar and wind energy production is the volatility of intermittent power generation due mainly to weather conditions. This fact usually limits the integration of PV systems and WTs into the power grid. Hence, accurately forecasting power generation in PV and WTs is of great importance for daily/hourly efficient management of power grid production, delivery, and storage, as well as for decision-making on the energy market. Also, accurate and prompt fault detection and diagnosis strategies are required to improve efficiencies of renewable energy systems, avoid the high cost of maintenance, and reduce risks of fire hazards, which could affect both personnel and installed equipment. This book intends to provide the reader with advanced statistical modeling, forecasting, and fault detection techniques in renewable energy systems

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    Applications of Power Electronics:Volume 1

    Get PDF

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Applications of Power Electronics:Volume 2

    Get PDF
    corecore