226 research outputs found

    Emotion Recognition from Skeletal Movements

    Get PDF
    Automatic emotion recognition has become an important trend in many artificial intelligence (AI) based applications and has been widely explored in recent years. Most research in the area of automated emotion recognition is based on facial expressions or speech signals. Although the influence of the emotional state on body movements is undeniable, this source of expression is still underestimated in automatic analysis. In this paper, we propose a novel method to recognise seven basic emotional states-namely, happy, sad, surprise, fear, anger, disgust and neutral-utilising body movement. We analyse motion capture data under seven basic emotional states recorded by professional actor/actresses using Microsoft Kinect v2 sensor. We propose a new representation of affective movements, based on sequences of body joints. The proposed algorithm creates a sequential model of affective movement based on low level features inferred from the spacial location and the orientation of joints within the tracked skeleton. In the experimental results, different deep neural networks were employed and compared to recognise the emotional state of the acquired motion sequences. The experimental results conducted in this work show the feasibility of automatic emotion recognition from sequences of body gestures, which can serve as an additional source of information in multimodal emotion recognition

    Review of Research on Speech Technology: Main Contributions From Spanish Research Groups

    Get PDF
    In the last two decades, there has been an important increase in research on speech technology in Spain, mainly due to a higher level of funding from European, Spanish and local institutions and also due to a growing interest in these technologies for developing new services and applications. This paper provides a review of the main areas of speech technology addressed by research groups in Spain, their main contributions in the recent years and the main focus of interest these days. This description is classified in five main areas: audio processing including speech, speaker characterization, speech and language processing, text to speech conversion and spoken language applications. This paper also introduces the Spanish Network of Speech Technologies (RTTH. Red Temática en Tecnologías del Habla) as the research network that includes almost all the researchers working in this area, presenting some figures, its objectives and its main activities developed in the last years

    Research @ FoCus it

    Get PDF

    A folk song retrieval system with a gesture-based interface

    Get PDF
    This article describes how a folk song retrieval system uses a gesture-based interface to recognize Kodály hand signs and formulate search queries

    Modelling the evolution of the Covid-19

    Get PDF

    Ubiquitous Integration and Temporal Synchronisation (UbilTS) framework : a solution for building complex multimodal data capture and interactive systems

    Get PDF
    Contemporary Data Capture and Interactive Systems (DCIS) systems are tied in with various technical complexities such as multimodal data types, diverse hardware and software components, time synchronisation issues and distributed deployment configurations. Building these systems is inherently difficult and requires addressing of these complexities before the intended and purposeful functionalities can be attained. The technical issues are often common and similar among diverse applications. This thesis presents the Ubiquitous Integration and Temporal Synchronisation (UbiITS) framework, a generic solution to address the technical complexities in building DCISs. The proposed solution is an abstract software framework that can be extended and customised to any application requirements. UbiITS includes all fundamental software components, techniques, system level layer abstractions and reference architecture as a collection to enable the systematic construction of complex DCISs. This work details four case studies to showcase the versatility and extensibility of UbiITS framework’s functionalities and demonstrate how it was employed to successfully solve a range of technical requirements. In each case UbiITS operated as the core element of each application. Additionally, these case studies are novel systems by themselves in each of their domains. Longstanding technical issues such as flexibly integrating and interoperating multimodal tools, precise time synchronisation, etc., were resolved in each application by employing UbiITS. The framework enabled establishing a functional system infrastructure in these cases, essentially opening up new lines of research in each discipline where these research approaches would not have been possible without the infrastructure provided by the framework. The thesis further presents a sample implementation of the framework on a device firmware exhibiting its capability to be directly implemented on a hardware platform. Summary metrics are also produced to establish the complexity, reusability, extendibility, implementation and maintainability characteristics of the framework.Engineering and Physical Sciences Research Council (EPSRC) grants - EP/F02553X/1, 114433 and 11394

    AI for smart cities

    Get PDF
    • …
    corecore