624 research outputs found

    Deep Detection of People and their Mobility Aids for a Hospital Robot

    Full text link
    Robots operating in populated environments encounter many different types of people, some of whom might have an advanced need for cautious interaction, because of physical impairments or their advanced age. Robots therefore need to recognize such advanced demands to provide appropriate assistance, guidance or other forms of support. In this paper, we propose a depth-based perception pipeline that estimates the position and velocity of people in the environment and categorizes them according to the mobility aids they use: pedestrian, person in wheelchair, person in a wheelchair with a person pushing them, person with crutches and person using a walker. We present a fast region proposal method that feeds a Region-based Convolutional Network (Fast R-CNN). With this, we speed up the object detection process by a factor of seven compared to a dense sliding window approach. We furthermore propose a probabilistic position, velocity and class estimator to smooth the CNN's detections and account for occlusions and misclassifications. In addition, we introduce a new hospital dataset with over 17,000 annotated RGB-D images. Extensive experiments confirm that our pipeline successfully keeps track of people and their mobility aids, even in challenging situations with multiple people from different categories and frequent occlusions. Videos of our experiments and the dataset are available at http://www2.informatik.uni-freiburg.de/~kollmitz/MobilityAidsComment: 7 pages, ECMR 2017, dataset and videos: http://www2.informatik.uni-freiburg.de/~kollmitz/MobilityAids

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Detection of Motorcycles in Urban Traffic Using Video Analysis: A Review

    Get PDF
    Motorcycles are Vulnerable Road Users (VRU) and as such, in addition to bicycles and pedestrians, they are the traffic actors most affected by accidents in urban areas. Automatic video processing for urban surveillance cameras has the potential to effectively detect and track these road users. The present review focuses on algorithms used for detection and tracking of motorcycles, using the surveillance infrastructure provided by CCTV cameras. Given the importance of results achieved by Deep Learning theory in the field of computer vision, the use of such techniques for detection and tracking of motorcycles is also reviewed. The paper ends by describing the performance measures generally used, publicly available datasets (introducing the Urban Motorbike Dataset (UMD) with quantitative evaluation results for different detectors), discussing the challenges ahead and presenting a set of conclusions with proposed future work in this evolving area

    Proceedings of the 2nd IUI Workshop on Interacting with Smart Objects

    Get PDF
    These are the Proceedings of the 2nd IUI Workshop on Interacting with Smart Objects. Objects that we use in our everyday life are expanding their restricted interaction capabilities and provide functionalities that go far beyond their original functionality. They feature computing capabilities and are thus able to capture information, process and store it and interact with their environments, turning them into smart objects

    Visual Analysis in Traffic & Re-identification

    Get PDF
    • …
    corecore