18 research outputs found

    Vibration-based gearbox fault diagnosis using deep neural networks

    Get PDF
    Vibration-based analysis is the most commonly used technique to monitor the condition of gearboxes. Accurate classification of these vibration signals collected from gearbox is helpful for the gearbox fault diagnosis. In recent years, deep neural networks are becoming a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. In this paper, a study of deep neural networks for fault diagnosis in gearbox is presented. Four classic deep neural networks (Auto-encoders, Restricted Boltzmann Machines, Deep Boltzmann Machines and Deep Belief Networks) are employed as the classifier to classify and identify the fault conditions of gearbox. To sufficiently validate the deep neural networks diagnosis system is highly effective and reliable, herein three types of data sets based on the health condition of two rotating mechanical systems are prepared and tested. Each signal obtained includes the information of several basic gear or bearing faults. Totally 62 data sets are used to test and train the proposed gearbox diagnosis systems. Corresponding to each vibration signal, 256 features from both time and frequency domain are selected as input parameters for deep neural networks. The accuracy achieved indicates that the presented deep neural networks are highly reliable and effective in fault diagnosis of gearbox

    A Multimodal Deep Learning-Based Fault Detection Model for a Plastic Injection Molding Process

    Get PDF
    The authors of this work propose a deep learning-based fault detection model that can be implemented in the field of plastic injection molding. Compared to conventional approaches to fault detection in this domain, recent deep learning approaches prove useful for on-site problems involving complex underlying dynamics with a large number of variables. In addition, the advent of advanced sensors that generate data types in multiple modalities prompts the need for multimodal learning with deep neural networks to detect faults. This process is able to facilitate information from various modalities in an end-to-end learning fashion. The proposed deep learning-based approach opts for an early fusion scheme, in which the low-level feature representations of modalities are combined. A case study involving real-world data, obtained from a car parts company and related to a car window side molding process, validates that the proposed model outperforms late fusion methods and conventional models in solving the problem

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Blind Application of Developed Smart Vibration-Based Machine Learning (SVML) Model for Machine Faults Diagnosis to Different Machine Conditions

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-02-11, rev-recd 2020-08-21, accepted 2020-09-16, registration 2020-09-16, pub-electronic 2020-10-07, online 2020-10-07, pub-print 2021-06Publication status: PublishedFunder: University of ManchesterAbstract: Purpose: The development and application of intelligent models to perform vibration-based condition monitoring in industry seems to be receiving attention in recent years. A number of such research studies using the artificial intelligence, machine learning, pattern recognition, etc., are available in the literature on this topic. These studies essentially used the machine vibration responses with known machine faults to develop smart fault diagnosis models. These models are yet to be tested for all kinds of machine faults and/or different operating conditions. Therefore, the purpose is to develop a generic machine faults diagnosis model that can be applied blindly to any identical machines with high confidence level in accuracy of the predictions. Methods: In this paper, a supervised smart fault diagnosis model is developed. This model is developed using the available measured vibration responses for the different rotor faults simulated on an experimental rotating rig operating at a constant speed. The developed smart vibration-based machine learning (SVML) model is then blindly tested to identify the healthy and faulty conditions of the rig when operating at different speeds. Results and conclusions: Several scenarios are proposed and examined during the development of the SVML model. It is observed that scenario of the vibration measurements simultaneously from all bearings from a machine is capable to fully map the machine dynamics in the VML model. Therefore, this developed when applied blindly to the sets of data at a different machine speed, the results are observed to be encouraging. The results clearly show a possibility for a centralised vibration-based condition monitoring (CVCM) model for identical machines operating at different rotating speeds

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio

    Optical flow tracking method for vibration identification of out-of-plane vision

    Get PDF
    Vibration measurement based on computer vision has been extensively studied and considered as a wide-range, non-contact measurement method. In this paper, the principle of vibration measurement using out-of-plane vision has been investigated under conventional imaging condition. A measurement model for out-of-plane vision has also been demonstrated. Combined the out-of-plane vision measurement model with the optical flow motion estimation principle, a novel model of optical flow tracking method for vibration detection based on out-of-plane vision has been proposed. It enables the identification of vibration parameters without image feature extraction. Visual vibration detection experiment has been conducted with a cantilever beam and a motor cover. Experimental results have been rigorously compared with finite element simulation to verify the efficacy of the proposed method. It shows that this method can effectively identify vibration parameters of the structure without image feature extraction

    Systems Engineering: Availability and Reliability

    Get PDF
    Current trends in Industry 4.0 are largely related to issues of reliability and availability. As a result of these trends and the complexity of engineering systems, research and development in this area needs to focus on new solutions in the integration of intelligent machines or systems, with an emphasis on changes in production processes aimed at increasing production efficiency or equipment reliability. The emergence of innovative technologies and new business models based on innovation, cooperation networks, and the enhancement of endogenous resources is assumed to be a strong contribution to the development of competitive economies all around the world. Innovation and engineering, focused on sustainability, reliability, and availability of resources, have a key role in this context. The scope of this Special Issue is closely associated to that of the ICIE’2020 conference. This conference and journal’s Special Issue is to present current innovations and engineering achievements of top world scientists and industrial practitioners in the thematic areas related to reliability and risk assessment, innovations in maintenance strategies, production process scheduling, management and maintenance or systems analysis, simulation, design and modelling

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations
    corecore