4,154 research outputs found

    Multimodal Data Analytics and Fusion for Data Science

    Get PDF
    Advances in technologies have rapidly accumulated a zettabyte of “new” data every two years. The huge amount of data have a powerful impact on various areas in science and engineering and generates enormous research opportunities, which calls for the design and development of advanced approaches in data analytics. Given such demands, data science has become an emerging hot topic in both industry and academia, ranging from basic business solutions, technological innovations, and multidisciplinary research to political decisions, urban planning, and policymaking. Within the scope of this dissertation, a multimodal data analytics and fusion framework is proposed for data-driven knowledge discovery and cross-modality semantic concept detection. The proposed framework can explore useful knowledge hidden in different formats of data and incorporate representation learning from data in multimodalities, especial for disaster information management. First, a Feature Affinity-based Multiple Correspondence Analysis (FA-MCA) method is presented to analyze the correlations between low-level features from different features, and an MCA-based Neural Network (MCA-NN) ispro- posedto capture the high-level features from individual FA-MCA models and seamlessly integrate the semantic data representations for video concept detection. Next, a genetic algorithm-based approach is presented for deep neural network selection. Furthermore, the improved genetic algorithm is integrated with deep neural networks to generate populations for producing optimal deep representation learning models. Then, the multimodal deep representation learning framework is proposed to incorporate the semantic representations from data in multiple modalities efficiently. At last, fusion strategies are applied to accommodate multiple modalities. In this framework, cross-modal mapping strategies are also proposed to organize the features in a better structure to improve the overall performance

    Spatio-Temporal Multimedia Big Data Analytics Using Deep Neural Networks

    Get PDF
    With the proliferation of online services and mobile technologies, the world has stepped into a multimedia big data era, where new opportunities and challenges appear with the high diversity multimedia data together with the huge amount of social data. Nowadays, multimedia data consisting of audio, text, image, and video has grown tremendously. With such an increase in the amount of multimedia data, the main question raised is how one can analyze this high volume and variety of data in an efficient and effective way. A vast amount of research work has been done in the multimedia area, targeting different aspects of big data analytics, such as the capture, storage, indexing, mining, and retrieval of multimedia big data. However, there is insufficient research that provides a comprehensive framework for multimedia big data analytics and management. To address the major challenges in this area, a new framework is proposed based on deep neural networks for multimedia semantic concept detection with a focus on spatio-temporal information analysis and rare event detection. The proposed framework is able to discover the pattern and knowledge of multimedia data using both static deep data representation and temporal semantics. Specifically, it is designed to handle data with skewed distributions. The proposed framework includes the following components: (1) a synthetic data generation component based on simulation and adversarial networks for data augmentation and deep learning training, (2) an automatic sampling model to overcome the imbalanced data issue in multimedia data, (3) a deep representation learning model leveraging novel deep learning techniques to generate the most discriminative static features from multimedia data, (4) an automatic hyper-parameter learning component for faster training and convergence of the learning models, (5) a spatio-temporal deep learning model to analyze dynamic features from multimedia data, and finally (6) a multimodal deep learning fusion model to integrate different data modalities. The whole framework has been evaluated using various large-scale multimedia datasets that include the newly collected disaster-events video dataset and other public datasets

    Multi-source Multimodal Data and Deep Learning for Disaster Response: A Systematic Review.

    Get PDF
    Mechanisms for sharing information in a disaster situation have drastically changed due to new technological innovations throughout the world. The use of social media applications and collaborative technologies for information sharing have become increasingly popular. With these advancements, the amount of data collected increases daily in different modalities, such as text, audio, video, and images. However, to date, practical Disaster Response (DR) activities are mostly depended on textual information, such as situation reports and email content, and the benefit of other media is often not realised. Deep Learning (DL) algorithms have recently demonstrated promising results in extracting knowledge from multiple modalities of data, but the use of DL approaches for DR tasks has thus far mostly been pursued in an academic context. This paper conducts a systematic review of 83 articles to identify the successes, current and future challenges, and opportunities in using DL for DR tasks. Our analysis is centred around the components of learning, a set of aspects that govern the application of Machine learning (ML) for a given problem domain. A flowchart and guidance for future research are developed as an outcome of the analysis to ensure the benefits of DL for DR activities are utilized.Publishe

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Efficient Turkish tweet classification system for crisis response

    Get PDF
    This paper presents a convolutional neural networks Turkish tweet classification system for crisis response. This system has the ability to classify the present information before or during any crisis. In addition, a preprocessing model was also implemented and integrated as a part of the developed system. This paper presents the first ever Turkish tweet dataset for crisis response, which can be widely used and improve similar studies. This dataset has been carefully preprocessed, annotated, and well organized. It is suitable to be used by all the well-known natural language processing tools. Extensive experimental work, using our produced Turkish tweet dataset and the English dataset ("socialmediadisaster-tweets-relevent"), has been performed to illustrate the performance of the developed approach. In addition, vector space model (VSM) techniques were studied to find out the most suitable technique that can be used for the Turkish language. Overall, the developed approach has achieved a quite good performance, robustness, and stability when processing both Turkish and English languages. Our experiments also compare the performance with some stateof-the-art English language systems, such as "CREES" and "deep multimodal"

    Intelligent Data Analytics using Deep Learning for Data Science

    Get PDF
    Nowadays, data science stimulates the interest of academics and practitioners because it can assist in the extraction of significant insights from massive amounts of data. From the years 2018 through 2025, the Global Datasphere is expected to rise from 33 Zettabytes to 175 Zettabytes, according to the International Data Corporation. This dissertation proposes an intelligent data analytics framework that uses deep learning to tackle several difficulties when implementing a data science application. These difficulties include dealing with high inter-class similarity, the availability and quality of hand-labeled data, and designing a feasible approach for modeling significant correlations in features gathered from various data sources. The proposed intelligent data analytics framework employs a novel strategy for improving data representation learning by incorporating supplemental data from various sources and structures. First, the research presents a multi-source fusion approach that utilizes confident learning techniques to improve the data quality from many noisy sources. Meta-learning methods based on advanced techniques such as the mixture of experts and differential evolution combine the predictive capacity of individual learners with a gating mechanism, ensuring that only the most trustworthy features or predictions are integrated to train the model. Then, a Multi-Level Convolutional Fusion is presented to train a model on the correspondence between local-global deep feature interactions to identify easily confused samples of different classes. The convolutional fusion is further enhanced with the power of Graph Transformers, aggregating the relevant neighboring features in graph-based input data structures and achieving state-of-the-art performance on a large-scale building damage dataset. Finally, weakly-supervised strategies, noise regularization, and label propagation are proposed to train a model on sparse input labeled data, ensuring the model\u27s robustness to errors and supporting the automatic expansion of the training set. The suggested approaches outperformed competing strategies in effectively training a model on a large-scale dataset of 500k photos, with just about 7% of the images annotated by a human. The proposed framework\u27s capabilities have benefited various data science applications, including fluid dynamics, geometric morphometrics, building damage classification from satellite pictures, disaster scene description, and storm-surge visualization

    Unpacking the Role of Artificial Intelligence for a Multimodal Service System Design

    Get PDF
    Since requirements of service demands are becoming increasingly complex and diversified, one of the success factors of a multimodal service system is its capability to design a specific service instance satisfying a specific set of requirements. This capability is further highlighted in Ad Hoc Multimodal Service Systems (AHMSSs), where service instances rarely follow a standard form of service delivery and exist only for a limited time. However, due to the increasing scale and frequency of services in many business and public sectors, meeting the desired level of capability has become troublesome. A well-designed Artificial Intelligence (AI) approach can be a solution to the difficulty by addressing the underlying complexity and uncertainty of the AHMSS design process. To conceptualize and foster AI applications to an AHMSS, this study identifies key decision-making problems in the AHMSS design process and discusses the role of AI in the process. The results will form the basis for AI development and implementation for an AHMSS and relevant service systems
    corecore