4,027 research outputs found

    Multimodal classification of driver glance

    Get PDF
    —This paper presents a multimodal approach to invehicle classification of driver glances. Driver glance is a strong predictor of cognitive load and is a useful input to many applications in the automotive domain. Six descriptive glance regions are defined and a classifier is trained on video recordings of drivers from a single low-cost camera. Visual features such as head orientation, eye gaze and confidence ratings are extracted, then statistical methods are used to perform failure analysis and calibration on the visual features. Non-visual features such as steering wheel angle and indicator position are extracted from a RaceLogic VBOX system. The approach is evaluated on a dataset containing multiple 60 second samples from 14 participants recorded while driving in a natural environment. We compare our multimodal approach to separate unimodal approaches using both Support Vector Machine (SVM) and Random Forests (RF) classifiers. RF Mean Decrease in Gini Index is used to rank selected features which gives insight into the selected features and improves the classifier performance. We demonstrate that our multimodal approach yields significantly higher results than unimodal approaches. The final model achieves an average F1 score of 70.5% across the six classes

    Detecting Distracted Driving with Deep Learning

    Get PDF
    © Springer International Publishing AG 2017Driver distraction is the leading factor in most car crashes and near-crashes. This paper discusses the types, causes and impacts of distracted driving. A deep learning approach is then presented for the detection of such driving behaviors using images of the driver, where an enhancement has been made to a standard convolutional neural network (CNN). Experimental results on Kaggle challenge dataset have confirmed the capability of a convolutional neural network (CNN) in this complicated computer vision task and illustrated the contribution of the CNN enhancement to a better pattern recognition accuracy.Peer reviewe

    Integration of an adaptive infotainment system in a vehicle and validation in real driving scenarios

    Get PDF
    More services, functionalities, and interfaces are increasingly being incorporated into current vehicles and may overload the driver capacity to perform primary driving tasks adequately. For this reason, a strategy for easing driver interaction with the infotainment system must be defined, and a good balance between road safety and driver experience must also be achieved. An adaptive Human Machine Interface (HMI) that manages the presentation of information and restricts drivers’ interaction in accordance with the driving complexity was designed and evaluated. For this purpose, the driving complexity value employed as a reference was computed by a predictive model, and the adaptive interface was designed following a set of proposed HMI principles. The system was validated performing acceptance and usability tests in real driving scenarios. Results showed the system performs well in real driving scenarios. Also, positive feedbacks were received from participants endorsing the benefits of integrating this kind of system as regards driving experience and road safety.Postprint (published version

    Studying Person-Specific Pointing and Gaze Behavior for Multimodal Referencing of Outside Objects from a Moving Vehicle

    Full text link
    Hand pointing and eye gaze have been extensively investigated in automotive applications for object selection and referencing. Despite significant advances, existing outside-the-vehicle referencing methods consider these modalities separately. Moreover, existing multimodal referencing methods focus on a static situation, whereas the situation in a moving vehicle is highly dynamic and subject to safety-critical constraints. In this paper, we investigate the specific characteristics of each modality and the interaction between them when used in the task of referencing outside objects (e.g. buildings) from the vehicle. We furthermore explore person-specific differences in this interaction by analyzing individuals' performance for pointing and gaze patterns, along with their effect on the driving task. Our statistical analysis shows significant differences in individual behaviour based on object's location (i.e. driver's right side vs. left side), object's surroundings, driving mode (i.e. autonomous vs. normal driving) as well as pointing and gaze duration, laying the foundation for a user-adaptive approach

    Ambient hues and audible cues: An approach to automotive user interface design using multi-modal feedback

    Get PDF
    The use of touchscreen interfaces for in-vehicle information, entertainment, and for the control of comfort settings is proliferating. Moreover, using these interfaces requires the same visual and manual resources needed for safe driving. Guided by much of the prevalent research in the areas of the human visual system, attention, and multimodal redundancy the Hues and Cues design paradigm was developed to make touchscreen automotive user interfaces more suitable to use while driving. This paradigm was applied to a prototype of an automotive user interface and evaluated with respects to driver performance using the dual-task, Lane Change Test (LCT). Each level of the design paradigm was evaluated in light of possible gender differences. The results of the repeated measures experiment suggests that when compared to interfaces without both the Hues and the Cues paradigm applied, the Hues and Cues interface requires less mental effort to operate, is more usable, and is more preferred. However, the results differ in the degradation in driver performance with interfaces that only have visual feedback resulting in better task times and significant gender differences in the driving task with interfaces that only have auditory feedback. Overall, the results reported show that the presentation of multimodal feedback can be useful in design automotive interfaces, but must be flexible enough to account for individual differences
    corecore