1,872 research outputs found

    Multimodal Fusion as Communicative Acts during Human-Robot Interaction

    Get PDF
    Research on dialog systems is a very active area in social robotics. During the last two decades, these systems have evolved from those based only on speech recognition and synthesis to the current and modern systems, which include new components and multimodality. By multimodal dialogue we mean the interchange of information among several interlocutors, not just using their voice as the mean of transmission but also all the available channels such as gestures, facial expressions, touch, sounds, etc. These channels add information to the message to be transmitted in every dialogue turn. The dialogue manager (IDiM) is one of the components of the robotic dialog system (RDS) and is in charge of managing the dialogue flow during the conversational turns. In order to do that, it is necessary to coherently treat the inputs and outputs of information that flow by different communication channels: audio, vision, radio frequency, touch, etc. In our approach, this multichannel input of information is temporarily fused into communicative acts (CAs). Each CA groups the information that flows through the different input channels into the same pack, transmitting a unique message or global idea. Therefore, this temporary fusion of information allows the IDiM to abstract from the channels used during the interaction, focusing only on the message, not on the way it is transmitted. This article presents the whole RDS and the description of how the multimodal fusion of information is made as CAs. Finally, several scenarios where the multimodal dialogue is used are presented.Comunidad de Madri

    Multilingual speech recognition for the elderly: The AALFred personal life assistant

    Get PDF
    The PaeLife project is a European industry-academia collaboration in the framework of the Ambient Assisted Living Joint Programme (AAL JP), with a goal of developing a multimodal, multilingual virtual personal life assistant to help senior citizens remain active and socially integrated. Speech is one of the key interaction modalities of AALFred, the Windows application developed in the project; the application can be controlled using speech input in four European languages: French, Hungarian, Polish and Portuguese. This paper briefly presents the personal life assistant and then focuses on the speech-related achievements of the project. These include the collection, transcription and annotation of large corpora of elderly speech, the development of automatic speech recognisers optimised for elderly speakers, a speech modality component that can easily be reused in other applications, and an automatic grammar translation service that allows for fast expansion of the automatic speech recognition functionality to new languages.info:eu-repo/semantics/publishedVersio

    MULTI-MODAL TASK INSTRUCTIONS TO ROBOTS BY NAIVE USERS

    Get PDF
    This thesis presents a theoretical framework for the design of user-programmable robots. The objective of the work is to investigate multi-modal unconstrained natural instructions given to robots in order to design a learning robot. A corpus-centred approach is used to design an agent that can reason, learn and interact with a human in a natural unconstrained way. The corpus-centred design approach is formalised and developed in detail. It requires the developer to record a human during interaction and analyse the recordings to find instruction primitives. These are then implemented into a robot. The focus of this work has been on how to combine speech and gesture using rules extracted from the analysis of a corpus. A multi-modal integration algorithm is presented, that can use timing and semantics to group, match and unify gesture and language. The algorithm always achieves correct pairings on a corpus and initiates questions to the user in ambiguous cases or missing information. The domain of card games has been investigated, because of its variety of games which are rich in rules and contain sequences. A further focus of the work is on the translation of rule-based instructions. Most multi-modal interfaces to date have only considered sequential instructions. The combination of frame-based reasoning, a knowledge base organised as an ontology and a problem solver engine is used to store these rules. The understanding of rule instructions, which contain conditional and imaginary situations require an agent with complex reasoning capabilities. A test system of the agent implementation is also described. Tests to confirm the implementation by playing back the corpus are presented. Furthermore, deployment test results with the implemented agent and human subjects are presented and discussed. The tests showed that the rate of errors that are due to the sentences not being defined in the grammar does not decrease by an acceptable rate when new grammar is introduced. This was particularly the case for complex verbal rule instructions which have a large variety of being expressed

    Augmented robotics dialog system for enhancing human-robot interaction

    Get PDF
    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human-robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human-robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.The authors gratefully acknowledge the funds provided by the Spanish MICINN (Ministry of Science and Innovation) through the project “Aplicaciones de los robots sociales”, DPI2011-26980 from the Spanish Ministry of Economy and Competitiveness. The research leading to these results has received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and co-funded by the Structural Funds of the EU

    Building and Designing Expressive Speech Synthesis

    Get PDF
    We know there is something special about speech. Our voices are not just a means of communicating. They also give a deep impression of who we are and what we might know. They can betray our upbringing, our emotional state, our state of health. They can be used to persuade and convince, to calm and to excite. As speech systems enter the social domain they are required to interact, support and mediate our social relationships with 1) each other, 2) with digital information, and, increasingly, 3) with AI-based algorithms and processes. Socially Interactive Agents (SIAs) are at the fore- front of research and innovation in this area. There is an assumption that in the future “spoken language will provide a natural conversational interface between human beings and so-called intelligent systems.” [Moore 2017, p. 283]. A considerable amount of previous research work has tested this assumption with mixed results. However, as pointed out “voice interfaces have become notorious for fostering frustration and failure” [Nass and Brave 2005, p.6]. It is within this context, between our exceptional and intelligent human use of speech to communicate and interact with other humans, and our desire to leverage this means of communication for artificial systems, that the technology, often termed expressive speech synthesis uncomfortably falls. Uncomfortably, because it is often overshadowed by issues in interactivity and the underlying intelligence of the system which is something that emerges from the interaction of many of the components in a SIA. This is especially true of what we might term conversational speech, where decoupling how things are spoken, from when and to whom they are spoken, can seem an impossible task. This is an even greater challenge in evaluation and in characterising full systems which have made use of expressive speech. Furthermore when designing an interaction with a SIA, we must not only consider how SIAs should speak but how much, and whether they should even speak at all. These considerations cannot be ignored. Any speech synthesis that is used in the context of an artificial agent will have a perceived accent, a vocal style, an underlying emotion and an intonational model. Dimensions like accent and personality (cross speaker parameters) as well as vocal style, emotion and intonation during an interaction (within-speaker parameters) need to be built in the design of a synthetic voice. Even a default or neutral voice has to consider these same expressive speech synthesis components. Such design parameters have a strong influence on how effectively a system will interact, how it is perceived and its assumed ability to perform a task or function. To ignore these is to blindly accept a set of design decisions that ignores the complex effect speech has on the user’s successful interaction with a system. Thus expressive speech synthesis is a key design component in SIAs. This chapter explores the world of expressive speech synthesis, aiming to act as a starting point for those interested in the design, building and evaluation of such artificial speech. The debates and literature within this topic are vast and are fundamentally multidisciplinary in focus, covering a wide range of disciplines such as linguistics, pragmatics, psychology, speech and language technology, robotics and human-computer interaction (HCI), to name a few. It is not our aim to synthesise these areas but to give a scaffold and a starting point for the reader by exploring the critical dimensions and decisions they may need to consider when choosing to use expressive speech. To do this, the chapter explores the building of expressive synthesis, highlighting key decisions and parameters as well as emphasising future challenges in expressive speech research and development. Yet, before these are expanded upon we must first try and define what we actually mean by expressive speech

    Attention-controlled acquisition of a qualitative scene model for mobile robots

    Get PDF
    Haasch A. Attention-controlled acquisition of a qualitative scene model for mobile robots. Bielefeld (Germany): Bielefeld University; 2007.Robots that are used to support humans in dangerous environments, e.g., in manufacture facilities, are established for decades. Now, a new generation of service robots is focus of current research and about to be introduced. These intelligent service robots are intended to support humans in everyday life. To achieve a most comfortable human-robot interaction with non-expert users it is, thus, imperative for the acceptance of such robots to provide interaction interfaces that we humans are accustomed to in comparison to human-human communication. Consequently, intuitive modalities like gestures or spontaneous speech are needed to teach the robot previously unknown objects and locations. Then, the robot can be entrusted with tasks like fetch-and-carry orders even without an extensive training of the user. In this context, this dissertation introduces the multimodal Object Attention System which offers a flexible integration of common interaction modalities in combination with state-of-the-art image and speech processing techniques from other research projects. To prove the feasibility of the approach the presented Object Attention System has successfully been integrated in different robotic hardware. In particular, the mobile robot BIRON and the anthropomorphic robot BARTHOC of the Applied Computer Science Group at Bielefeld University. Concluding, the aim of this work, to acquire a qualitative Scene Model by a modular component offering object attention mechanisms, has been successfully achieved as demonstrated on numerous occasions like reviews for the EU-integrated Project COGNIRON or demos

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research
    • 

    corecore