772 research outputs found

    The influence of system transparency on trust: Evaluating interfaces in a highly automated vehicle

    Get PDF
    Previous studies indicate that, if an automated vehicle communicates its system status and intended behaviour, it could increase user trust and acceptance. However, it is still unclear what types of interfaces will better portray this type of information. The present study evaluated different configurations of screens comparing how they communicated the possible hazards in the environment (e.g. vulnerable road users), and vehicle behaviours (e.g. intended trajectory). These interfaces were presented in a fully automated vehicle tested by 25 participants in an indoor arena. Surveys and interviews measured trust, usability and experience after users were driven by an automated low-speed pod. Participants experienced four types of interfaces, from a simple journey tracker to a windscreen-wide augmented reality (AR) interface which overlays hazards highlighted in the environment and the trajectory of the vehicle. A combination of the survey and interview data showed a clear preference for the AR windscreen and an animated representation of the environment. The trust in the vehicle featuring these interfaces was significantly higher than pretrial measurements. However, some users questioned if they want to see this information all the time. One additional result was that some users felt motion sick when presented with the more engaging content. This paper provides recommendations for the design of interfaces with the potential to improve trust and user experience within highly automated vehicles

    An Augmented Interaction Strategy For Designing Human-Machine Interfaces For Hydraulic Excavators

    Get PDF
    Lack of adequate information feedback and work visibility, and fatigue due to repetition have been identified as the major usability gaps in the human-machine interface (HMI) design of modern hydraulic excavators that subject operators to undue mental and physical workload, resulting in poor performance. To address these gaps, this work proposed an innovative interaction strategy, termed “augmented interaction”, for enhancing the usability of the hydraulic excavator. Augmented interaction involves the embodiment of heads-up display and coordinated control schemes into an efficient, effective and safe HMI. Augmented interaction was demonstrated using a framework consisting of three phases: Design, Implementation/Visualization, and Evaluation (D.IV.E). Guided by this framework, two alternative HMI design concepts (Design A: featuring heads-up display and coordinated control; and Design B: featuring heads-up display and joystick controls) in addition to the existing HMI design (Design C: featuring monitor display and joystick controls) were prototyped. A mixed reality seating buck simulator, named the Hydraulic Excavator Augmented Reality Simulator (H.E.A.R.S), was used to implement the designs and simulate a work environment along with a rock excavation task scenario. A usability evaluation was conducted with twenty participants to characterize the impact of the new HMI types using quantitative (task completion time, TCT; and operating error, OER) and qualitative (subjective workload and user preference) metrics. The results indicated that participants had a shorter TCT with Design A. For OER, there was a lower error probability due to collisions (PER1) with Design A, and lower error probability due to misses (PER2)with Design B. The subjective measures showed a lower overall workload and a high preference for Design B. It was concluded that augmented interaction provides a viable solution for enhancing the usability of the HMI of a hydraulic excavator

    The Reality of Virtual Environments: WPE II Paper

    Get PDF
    Recent advances in computer technology have made it now possible to create and display three-dimensional virtual environments for real-time exploration and interaction by a user. This paper surveys some of the research done in this field at such places as: NASA\u27s Ames Research Center, MIT\u27s Media Laboratory, The University of North Carolina at Chapel Hill, and the University of New Brunswick. Limitations to the reality of these simulations will be examined, focusing on input and output devices, computational complexity, as well as tactile and visual feedback

    Gesture Based Control of Semi-Autonomous Vehicles

    Get PDF
    The objective of this investigation is to explore the use of hand gestures to control semi-autonomous vehicles, such as quadcopters, using realistic, physics based simulations. This involves identifying natural gestures to control basic functions of a vehicle, such as maneuvering and onboard equipment operation, and building simulations using the Unity game engine to investigate preferred use of those gestures. In addition to creating a realistic operating experience, human factors associated with limitations on physical hand motion and information management are also considered in the simulation development process. Testing with external participants using a recreational quadcopter simulation built in Unity was conducted to assess the suitability of the simulation and preferences between a joystick approach and the gesture-based approach. Initial feedback indicated that the simulation represented the actual vehicle performance well and that the joystick is preferred over the gesture-based approach. Improvements in the gesture-based control are documented as additional features in the simulation, such as basic maneuver training and additional vehicle positioning information, are added to assist the user to better learn the gesture-based interface and implementation of active control concepts to interpret and apply vehicle forces and torques. Tests were also conducted with an actual ground vehicle to investigate if knowledge and skill from the simulated environment transfers to a real-life scenario. To assess this, an immersive virtual reality (VR) simulation was built in Unity as a training environment to learn how to control a remote control car using gestures. This was then followed by a control of the actual ground vehicle. Observations and participant feedback indicated that range of hand movement and hand positions transferred well to the actual demonstration. This illustrated that the VR simulation environment provides a suitable learning experience, and an environment from which to assess human performance; thus, also validating the observations from earlier tests. Overall results indicate that the gesture-based approach holds promise given the emergence of new technology, but additional work needs to be pursued. This includes algorithms to process gesture data to provide more stable and precise vehicle commands and training environments to familiarize users with this new interface concept

    Collision warning design in automotive head-up displays

    Get PDF
    Abstract. In the last few years, the automotive industry has experienced a large growth in the hardware and the underlying electronics. The industry benefits from both Human Machine Interface (HMI) research and modern technology. There are many applications of the Advanced Driver Assistant System (ADAS) and their positive impact on drivers is even more. Forward Collision Warning (FCW) is one of many applications of ADAS. In the last decades, different approaches and tools are used to implement FCW systems. Current Augmented Reality (AR) applications are feasible to integrate in modern cars. In this thesis work, we introduce three different FCW designs: static, animated and 3D animated warnings. We test the proposed designs in three different environments: day, night and rain. The designs static and animated achieve a minimum response time 0.486 s whereas the 3D animated warning achieves 1.153 s

    Designing procedure execution tools with emerging technologies for future astronauts

    Get PDF
    NASA’s human spaceflight efforts are moving towards long-duration exploration missions requiring asynchronous communication between onboard crew and an increasingly remote ground support. In current missions aboard the International Space Station, there is a near real-time communication loop between Mission Control Center and astronauts. This communication is essential today to support operations, maintenance, and science requirements onboard, without which many tasks would no longer be feasible. As NASA takes the next leap into a new era of human space exploration, new methods and tools compensating for the lack of continuous, real-time communication must be explored. The Human-Computer Interaction Group at NASA Ames Research Center has been investigating emerging technologies and their applicability to increase crew autonomy in missions beyond low Earth orbit. Interactions using augmented reality and the Internet of Things have been researched as possibilities to facilitate usability within procedure execution operations. This paper outlines four research efforts that included technology demonstrations and usability studies with prototype procedure tools implementing emerging technologies. The studies address habitat feedback integration, analogous procedure testing, task completion management, and crew training. Through these technology demonstrations and usability studies, we find that low-to medium-fidelity prototypes, evaluated early in the design process, are both effective for garnering stakeholder buy-in and developing requirements for future systems. In this paper, we present the findings of the usability studies for each project and discuss ways in which these emerging technologies can be integrated into future human spaceflight operations

    Mixed-reality for unmanned aerial vehicle operations in near earth environments

    Get PDF
    Future applications will bring unmanned aerial vehicles (UAVs) to near Earth environments such as urban areas, causing a change in the way UAVs are currently operated. Of concern is that UAV accidents still occur at a much higher rate than the accident rate for commercial airliners. A number of these accidents can be attributed to a UAV pilot's low situation awareness (SA) due to the limitations of UAV operating interfaces. The main limitation is the physical separation between the vehicle and the pilot. This eliminates any motion and exteroceptive sensory feedback to the pilot. These limitation on top of a small eld of view from the onboard camera results in low SA, making near Earth operations di cult and dangerous. Autonomy has been proposed as a solution for near Earth tasks but state of the art arti cial intelligence still requires very structured and well de ned goals to allow safe autonomous operations. Therefore, there is a need to better train pilots to operate UAVs in near Earth environments and to augment their performance for increased safety and minimization of accidents.In this work, simulation software, motion platform technology, and UAV sensor suites were integrated to produce mixed-reality systems that address current limitations of UAV piloting interfaces. The mixed reality de nition is extended in this work to encompass not only the visual aspects but to also include a motion aspect. A training and evaluation system for UAV operations in near Earth environments was developed. Modi cations were made to ight simulator software to recreate current UAV operating modalities (internal and external). The training and evaluation system has been combined with Drexel's Sensor Integrated Systems Test Rig (SISTR) to allow simulated missions while incorporating real world environmental e ects andUAV sensor hardware.To address the lack of motion feedback to a UAV pilot, a system was developed that integrates a motion simulator into UAV operations. The system is designed such that during ight, the angular rate of a UAV is captured by an onboard inertial measurement unit (IMU) and is relayed to a pilot controlling the vehicle from inside the motion simulator.Efforts to further increase pilot SA led to the development of a mixed reality chase view piloting interface. Chase view is similar to a view of being towed behind the aircraft. It combines real world onboard camera images with a virtual representation of the vehicle and the surrounding operating environment. A series of UAV piloting experiments were performed using the training and evaluation systems described earlier. Subjects' behavioral performance while using the onboard camera view and the mixed reality chase view interface during missions was analyzed. Subjects' cognitive workload during missions was also assessed using subjective measures such as NASA task load index and non-subjective brain activity measurements using a functional Infrared Spectroscopy (fNIR) system. Behavioral analysis showed that the chase view interface improved pilot performance in near Earth ights and increased their situational awareness. fNIR analysis showed that a subjects cognitive workload was signi cantly less while using the chase view interface. Real world ight tests were conducted in a near Earth environment with buildings and obstacles to evaluate the chase view interface with real world data. The interface performed very well with real world, real time data in close range scenarios.The mixed reality approaches presented follow studies on human factors performance and cognitive loading. The resulting designs serve as test beds for studying UAV pilot performance, creating training programs, and developing tools to augment UAV operations and minimize UAV accidents during operations in near Earth environments.Ph.D., Mechanical Engineering -- Drexel University, 201

    Vision for Scene Understanding

    Get PDF
    This manuscript covers my recent research on vision algorithms for scene understanding, articulated in 3 research axes: 3D Vision, Weakly supervised vision, and Vision and physics. At the core of the most recent works is weakly-supervised learning and physics-embodied vision, which address short comings of supervised learning that requires large amount of data. The use of more physically grounded algorithms appears evidently beneficial as both robots and humans naturally evolve in a 3D physical world. On the other hand, accounting for physics knowledge reflects important cue about lighting and weather conditions of the scene central in my work. Physics-informed machine learning is not only beneficial for increased interpretability but also to compensate labels and data scarcity

    Computer-aided investigation of interaction mediated by an AR-enabled wearable interface

    Get PDF
    Dierker A. Computer-aided investigation of interaction mediated by an AR-enabled wearable interface. Bielefeld: Universitätsbibliothek Bielefeld; 2012.This thesis provides an approach on facilitating the analysis of nonverbal behaviour during human-human interaction. Thereby, much of the work that researchers do starting with experiment control, data acquisition, tagging and finally the analysis of the data is alleviated. For this, software and hardware techniques are used as sensor technology, machine learning, object tracking, data processing, visualisation and Augmented Reality. These are combined into an Augmented-Reality-enabled Interception Interface (ARbInI), a modular wearable interface for two users. The interface mediates the users’ interaction thereby intercepting and influencing it. The ARbInI interface consists of two identical setups of sensors and displays, which are mutually coupled. Combining cameras and microphones with sensors, the system offers to record rich multimodal interaction cues in an efficient way. The recorded data can be analysed online and offline for interaction features (e. g. head gestures in head movements, objects in joint attention, speech times) using integrated machine-learning approaches. The classified features can be tagged in the data. For a detailed analysis, the recorded multimodal data is transferred automatically into file bundles loadable in a standard annotation tool where the data can be further tagged by hand. For statistic analyses of the complete multimodal corpus, a toolbox for use in a standard statistics program allows to directly import the corpus and to automate the analysis of multimodal and complex relationships between arbitrary data types. When using the optional multimodal Augmented Reality techniques integrated into ARbInI, the camera records exactly what the participant can see and nothing more or less. The following additional advantages can be used during the experiment: (a) the experiment can be controlled by using the auditory or visual displays thereby ensuring controlled experimental conditions, (b) the experiment can be disturbed, thus offering to investigate how problems in interaction are discovered and solved, and (c) the experiment can be enhanced by interactively comprising the behaviour of the user thereby offering to investigate how users cope with novel interaction channels. This thesis introduces criteria for the design of scenarios in which interaction analysis can benefit from the experimentation interface and presents a set of scenarios. These scenarios are applied in several empirical studies thereby collecting multimodal corpora that particularly include head gestures. The capabilities of computer-aided interaction analysis for the investigation of speech, visual attention and head movements are illustrated on this empirical data. The effects of the head-mounted display (HMD) are evaluated thoroughly in two studies. The results show that the HMD users need more head movements to achieve the same shift of gaze direction and perform less head gestures with slower velocity and fewer repetitions compared to non-HMD users. From this, a reduced willingness to perform head movements if not necessary can be concluded. Moreover, compensation strategies are established like leaning backwards to enlarge the field of view, and increasing the number of utterances or changing the reference to objects to compensate for the absence of mutual eye contact. Two studies investigate the interaction while actively inducing misunderstandings. The participants here use compensation strategies like multiple verification questions and arbitrary gaze movements. Additionally, an enhancement method that highlights the visual attention of the interaction partner is evaluated in a search task. The results show a significantly shorter reaction time and fewer errors

    Perception and Prediction in Multi-Agent Urban Traffic Scenarios for Autonomous Driving

    Get PDF
    In multi-agent urban scenarios, autonomous vehicles navigate an intricate network of interactions with a variety of agents, necessitating advanced perception modeling and trajectory prediction. Research to improve perception modeling and trajectory prediction in autonomous vehicles is fundamental to enhance safety and efficiency in complex driving scenarios. Better data association for 3D multi-object tracking ensures consistent identification and tracking of multiple objects over time, crucial in crowded urban environments to avoid mis-identifications that can lead to unsafe maneuvers or collisions. Effective context modeling for 3D object detection aids in interpreting complex scenes, effectively dealing with challenges like noisy or missing points in sensor data, and occlusions. It enables the system to infer properties of partially observed or obscured objects, enhancing the robustness of the autonomous system in varying conditions. Furthermore, improved trajectory prediction of surrounding vehicles allows an autonomous vehicle to anticipate future actions of other road agents and adapt accordingly, crucial in scenarios like merging lanes, making unprotected turns, or navigating intersections. In essence, these research directions are key to mitigating risks in autonomous driving, and facilitating seamless interaction with other road users. In Part I, we address the task of improving perception modeling for AV systems. Concretely our contributions are: (i) FANTrack introduces a novel application of Convolutional Neural Networks (CNNs) for real-time 3D Multi-object Tracking (MOT) in autonomous driving, addressing challenges such as varying number of targets, track fragmentation, and noisy detections, thereby enhancing the accuracy of perception capabilities for safe and efficient navigation. (ii) FANTrack proposes to leverage both visual and 3D bounding box data, utilizing Siamese networks and hard-mining, to enhance the similarity functions used in data associations for 3D Multi-object Tracking (MOT). (iii) SA-Det3D introduces a globally-adaptive Full Self-Attention (FSA) module for enhanced feature extraction in 3D object detection, overcoming the limitations of traditional convolution-based techniques by facilitating adaptive context aggregation from entire point-cloud data, thereby bolstering perception modeling in autonomous driving. (iv) SA-Det3D also introduces the Deformable Self-Attention (DSA) module, a scalable adaptation for global context assimilation in large-scale point-cloud datasets, designed to select and focus on most informative regions, thereby improving the quality of feature descriptors and perception modeling in autonomous driving. In Part II, we focus on the task of improving trajectory prediction of surrounding agents. Concretely, our contributions are: (i) SSL-Lanes introduces a self-supervised learning approach for motion forecasting in autonomous driving that enhances accuracy and generalizability without compromising inference speed or model simplicity, utilizing pseudo-labels from pretext tasks for learning transferable motion patterns. (ii) The second contribution in SSL-Lanes is the design of comprehensive experiments to demonstrate that SSL-Lanes can yield more generalizable and robust trajectory predictions than traditional supervised learning approaches. (iii) SSL-Interactions presents a new framework that utilizes pretext tasks to enhance interaction modeling for trajectory prediction in autonomous driving. (iv) SSL-Interactions advances the prediction of agent trajectories in interaction-centric scenarios by creating a curated dataset that explicitly labels meaningful interactions, thus enabling the effective training of a predictor utilizing pretext tasks and enhancing the modeling of agent-agent interactions in autonomous driving environments
    • …
    corecore