3,224 research outputs found

    Artificial Intelligence for Suicide Assessment using Audiovisual Cues: A Review

    Get PDF
    Death by suicide is the seventh leading death cause worldwide. The recent advancement in Artificial Intelligence (AI), specifically AI applications in image and voice processing, has created a promising opportunity to revolutionize suicide risk assessment. Subsequently, we have witnessed fast-growing literature of research that applies AI to extract audiovisual non-verbal cues for mental illness assessment. However, the majority of the recent works focus on depression, despite the evident difference between depression symptoms and suicidal behavior and non-verbal cues. This paper reviews recent works that study suicide ideation and suicide behavior detection through audiovisual feature analysis, mainly suicidal voice/speech acoustic features analysis and suicidal visual cues. Automatic suicide assessment is a promising research direction that is still in the early stages. Accordingly, there is a lack of large datasets that can be used to train machine learning and deep learning models proven to be effective in other, similar tasks.Comment: Manuscript submitted to Arificial Intelligence Reviews (2022

    Modern Views of Machine Learning for Precision Psychiatry

    Full text link
    In light of the NIMH's Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of the ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. Additionally, we review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We further discuss explainable AI (XAI) and causality testing in a closed-human-in-the-loop manner, and highlight the ML potential in multimedia information extraction and multimodal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research

    Automatic Detection of Depression in Speech Using Ensemble Convolutional Neural Networks

    Get PDF
    This paper proposes a speech-based method for automatic depression classification. The system is based on ensemble learning for Convolutional Neural Networks (CNNs) and is evaluated using the data and the experimental protocol provided in the Depression Classification Sub-Challenge (DCC) at the 2016 Audio–Visual Emotion Challenge (AVEC-2016). In the pre-processing phase, speech files are represented as a sequence of log-spectrograms and randomly sampled to balance positive and negative samples. For the classification task itself, first, a more suitable architecture for this task, based on One-Dimensional Convolutional Neural Networks, is built. Secondly, several of these CNN-based models are trained with different initializations and then the corresponding individual predictions are fused by using an Ensemble Averaging algorithm and combined per speaker to get an appropriate final decision. The proposed ensemble system achieves satisfactory results on the DCC at the AVEC-2016 in comparison with a reference system based on Support Vector Machines and hand-crafted features, with a CNN+LSTM-based system called DepAudionet, and with the case of a single CNN-based classifier.This research was partly funded by Spanish Government grant TEC2017-84395-P

    Deep Learning-based Cognitive Impairment Diseases Prediction and Assistance using Multimodal Data

    Get PDF
    In this project, we propose a mobile robot-based system capable of analyzing data from elderly people and patients with cognitive impairment diseases, such as aphasia or dementia. The project entails the deployment of two primary tasks that will be performed by the robot. The first task is the detection of these diseases in their early stages to initiate professional treatment, thereby improving the patient's quality of life. The other task focuses on automatic emotion detection, particularly during interactions with other people, in this case, clinicians. Additionally, the project aims to examine how the combination of different modalities, such as audio or text, can influence the model's results. Extensive research has been conducted on various dementia and aphasia datasets, as well as the implemented tasks. For this purpose, we utilized the DementiaBank and AphasiaBank datasets, which contain multimodal data in different formats, including video, audio, and audio transcriptions. We employed diverse models for the prediction task, including Convolutional Neural Networks for audio classification, Transformers for text classification, and a multimodal model combining both approaches. These models underwent testing on a separate test set, and the best results were achieved using the text modality, achieving a 90.36% accuracy in detecting dementia. Additionally, we conducted a detailed analysis of the available data to explain the obtained results and the model's explainability. The pipeline for automatic emotion recognition was evaluated by manually reviewing initial frames of one hundred randomly selected video samples from the dataset. This pipeline was also employed to recognize emotions in both healthy patients, and those with aphasia. The study revealed that individuals with aphasia express different emotional moods than healthy ones when listening to someone's speech, primarily due to their difficulties in understanding and expressing speech. Due to this, it negatively impacts their mood. Analyzing their emotional state can facilitate improved interactions by avoiding conversations that may have a negative impact on their mood, thus providing better assistance

    Reconhecimento de padrões em expressões faciais : algoritmos e aplicações

    Get PDF
    Orientador: Hélio PedriniTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O reconhecimento de emoções tem-se tornado um tópico relevante de pesquisa pela comunidade científica, uma vez que desempenha um papel essencial na melhoria contínua dos sistemas de interação humano-computador. Ele pode ser aplicado em diversas áreas, tais como medicina, entretenimento, vigilância, biometria, educação, redes sociais e computação afetiva. Há alguns desafios em aberto relacionados ao desenvolvimento de sistemas emocionais baseados em expressões faciais, como dados que refletem emoções mais espontâneas e cenários reais. Nesta tese de doutorado, apresentamos diferentes metodologias para o desenvolvimento de sistemas de reconhecimento de emoções baseado em expressões faciais, bem como sua aplicabilidade na resolução de outros problemas semelhantes. A primeira metodologia é apresentada para o reconhecimento de emoções em expressões faciais ocluídas baseada no Histograma da Transformada Census (CENTRIST). Expressões faciais ocluídas são reconstruídas usando a Análise Robusta de Componentes Principais (RPCA). A extração de características das expressões faciais é realizada pelo CENTRIST, bem como pelos Padrões Binários Locais (LBP), pela Codificação Local do Gradiente (LGC) e por uma extensão do LGC. O espaço de características gerado é reduzido aplicando-se a Análise de Componentes Principais (PCA) e a Análise Discriminante Linear (LDA). Os algoritmos K-Vizinhos mais Próximos (KNN) e Máquinas de Vetores de Suporte (SVM) são usados para classificação. O método alcançou taxas de acerto competitivas para expressões faciais ocluídas e não ocluídas. A segunda é proposta para o reconhecimento dinâmico de expressões faciais baseado em Ritmos Visuais (VR) e Imagens da História do Movimento (MHI), de modo que uma fusão de ambos descritores codifique informações de aparência, forma e movimento dos vídeos. Para extração das características, o Descritor Local de Weber (WLD), o CENTRIST, o Histograma de Gradientes Orientados (HOG) e a Matriz de Coocorrência em Nível de Cinza (GLCM) são empregados. A abordagem apresenta uma nova proposta para o reconhecimento dinâmico de expressões faciais e uma análise da relevância das partes faciais. A terceira é um método eficaz apresentado para o reconhecimento de emoções audiovisuais com base na fala e nas expressões faciais. A metodologia envolve uma rede neural híbrida para extrair características visuais e de áudio dos vídeos. Para extração de áudio, uma Rede Neural Convolucional (CNN) baseada no log-espectrograma de Mel é usada, enquanto uma CNN construída sobre a Transformada de Census é empregada para a extração das características visuais. Os atributos audiovisuais são reduzidos por PCA e LDA, então classificados por KNN, SVM, Regressão Logística (LR) e Gaussian Naïve Bayes (GNB). A abordagem obteve taxas de reconhecimento competitivas, especialmente em dados espontâneos. A penúltima investiga o problema de detectar a síndrome de Down a partir de fotografias. Um descritor geométrico é proposto para extrair características faciais. Experimentos realizados em uma base de dados pública mostram a eficácia da metodologia desenvolvida. A última metodologia trata do reconhecimento de síndromes genéticas em fotografias. O método visa extrair atributos faciais usando características de uma rede neural profunda e medidas antropométricas. Experimentos são realizados em uma base de dados pública, alcançando taxas de reconhecimento competitivasAbstract: Emotion recognition has become a relevant research topic by the scientific community, since it plays an essential role in the continuous improvement of human-computer interaction systems. It can be applied in various areas, for instance, medicine, entertainment, surveillance, biometrics, education, social networks, and affective computing. There are some open challenges related to the development of emotion systems based on facial expressions, such as data that reflect more spontaneous emotions and real scenarios. In this doctoral dissertation, we propose different methodologies to the development of emotion recognition systems based on facial expressions, as well as their applicability in the development of other similar problems. The first is an emotion recognition methodology for occluded facial expressions based on the Census Transform Histogram (CENTRIST). Occluded facial expressions are reconstructed using an algorithm based on Robust Principal Component Analysis (RPCA). Extraction of facial expression features is then performed by CENTRIST, as well as Local Binary Patterns (LBP), Local Gradient Coding (LGC), and an LGC extension. The generated feature space is reduced by applying Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) algorithms are used for classification. This method reached competitive accuracy rates for occluded and non-occluded facial expressions. The second proposes a dynamic facial expression recognition based on Visual Rhythms (VR) and Motion History Images (MHI), such that a fusion of both encodes appearance, shape, and motion information of the video sequences. For feature extraction, Weber Local Descriptor (WLD), CENTRIST, Histogram of Oriented Gradients (HOG), and Gray-Level Co-occurrence Matrix (GLCM) are employed. This approach shows a new direction for performing dynamic facial expression recognition, and an analysis of the relevance of facial parts. The third is an effective method for audio-visual emotion recognition based on speech and facial expressions. The methodology involves a hybrid neural network to extract audio and visual features from videos. For audio extraction, a Convolutional Neural Network (CNN) based on log Mel-spectrogram is used, whereas a CNN built on Census Transform is employed for visual extraction. The audio and visual features are reduced by PCA and LDA, and classified through KNN, SVM, Logistic Regression (LR), and Gaussian Naïve Bayes (GNB). This approach achieves competitive recognition rates, especially in a spontaneous data set. The second last investigates the problem of detecting Down syndrome from photographs. A geometric descriptor is proposed to extract facial features. Experiments performed on a public data set show the effectiveness of the developed methodology. The last methodology is about recognizing genetic disorders in photos. This method focuses on extracting facial features using deep features and anthropometric measurements. Experiments are conducted on a public data set, achieving competitive recognition ratesDoutoradoCiência da ComputaçãoDoutora em Ciência da Computação140532/2019-6CNPQCAPE

    Multimodal Data Analysis of Dyadic Interactions for an Automated Feedback System Supporting Parent Implementation of Pivotal Response Treatment

    Get PDF
    abstract: Parents fulfill a pivotal role in early childhood development of social and communication skills. In children with autism, the development of these skills can be delayed. Applied behavioral analysis (ABA) techniques have been created to aid in skill acquisition. Among these, pivotal response treatment (PRT) has been empirically shown to foster improvements. Research into PRT implementation has also shown that parents can be trained to be effective interventionists for their children. The current difficulty in PRT training is how to disseminate training to parents who need it, and how to support and motivate practitioners after training. Evaluation of the parents’ fidelity to implementation is often undertaken using video probes that depict the dyadic interaction occurring between the parent and the child during PRT sessions. These videos are time consuming for clinicians to process, and often result in only minimal feedback for the parents. Current trends in technology could be utilized to alleviate the manual cost of extracting data from the videos, affording greater opportunities for providing clinician created feedback as well as automated assessments. The naturalistic context of the video probes along with the dependence on ubiquitous recording devices creates a difficult scenario for classification tasks. The domain of the PRT video probes can be expected to have high levels of both aleatory and epistemic uncertainty. Addressing these challenges requires examination of the multimodal data along with implementation and evaluation of classification algorithms. This is explored through the use of a new dataset of PRT videos. The relationship between the parent and the clinician is important. The clinician can provide support and help build self-efficacy in addition to providing knowledge and modeling of treatment procedures. Facilitating this relationship along with automated feedback not only provides the opportunity to present expert feedback to the parent, but also allows the clinician to aid in personalizing the classification models. By utilizing a human-in-the-loop framework, clinicians can aid in addressing the uncertainty in the classification models by providing additional labeled samples. This will allow the system to improve classification and provides a person-centered approach to extracting multimodal data from PRT video probes.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    corecore