6,047 research outputs found

    Last Year\u27s Virus, This Year\u27s Cancer Treatment

    Get PDF
    For hundreds of years, cancer has stumped medical professionals across the world as a cure evaded them. Now, a new approach to battling cancer has entered the arena: viruses. The concept of using one deadly disease to cure another has elevated cancer research to an entirely new level, with some promising results. This article examines recent research regarding the use of a modified measles virus in improving cancer outcomes

    Healthcare PANs: Personal Area Networks for trauma care and home care

    Get PDF
    The first hour following the trauma is of crucial importance in trauma care. The sooner treatment begins, the better the ultimate outcome for the patient. Generally the initial treatment is handled by paramedical personnel arriving at the site of the accident with an ambulance. There is evidence to show that if the expertise of the on-site paramedic team can be supported by immediate and continuous access to and communication with the expert medical team at the hospital, patient outcomes can be improved. After care also influences the ultimate recovery of the patient. After-treatment follow up often occurs in-hospital in spite of the fact that care at home can offer more advantages and can accelerate recovery. Based on emerging and future wireless communication technologies, in a previous paper [1] we presented an initial vision of two future healthcare settings, supported by applications which we call Virtual Trauma Team and Virtual Homecare Team. The Virtual Trauma Team application involves high quality wireless multimedia communications between ambulance paramedics and the hospital facilitated by paramedic Body Area Networks (BANs) [2] and an ambulance-based Vehicle Area Network (VAN). The VAN supports bi-directional streaming audio and video communication between the ambulance and the hospital even when moving at speed. The clinical motivation for Virtual Trauma Team is to increase survival rates in trauma care. The Virtual Homecare Team application enables homecare coordinated by home nursing services and supported by the patient's PAN which consists of a patient BAN in combination with an ambient intelligent home environment. The homecare PAN provides intelligent monitoring and support functions and the possibility to ad hoc network to the visiting health professionals’ own BANs as well as high quality multimedia communication links to remote members of the virtual team. The motivation for Virtual Homecare Team is to improve quality of life and independence for patients by supporting care at home; the economic motivation is to replace expensive hospital-based care with homecare by virtual teams using wireless technology to support the patient and the carers. In this paper we develop the vision further and focus in particular on the concepts of personal and body area networks

    Microsystems technology: objectives

    Get PDF
    This contribution focuses on the objectives of microsystems technology (MST). The reason for this is two fold. First of all, it should explain what MST actually is. This question is often posed and a simple answer is lacking, as a consequence of the diversity of subjects that are perceived as MST. The second reason is that a map of the somewhat chaotic field of MST is needed to identify sub-territories, for which standardization in terms of system modules an interconnections is feasible. To define the objectives a pragmatic approach has been followed. From the literature a selection of topics has been chosen and collected that are perceived as belonging to the field of MST by a large community of workers in the field (more than 250 references). In this way an overview has been created with `applicationsÂż and `generic issuesÂż as the main characteristics

    Design considerations for delivering e-learning to surgical trainees

    Get PDF
    Copyright © 2011, IGI Global. Distributed with permission.Challenges remain in leveraging e-health technologies for continuous medical education/professional development. This study examines the interface design and learning process features related to the use of multimedia in providing effective support for the knowledge and practice of surgical skills. Twenty-one surgical trainees evaluated surgical content on a CD-ROM format based on 14 interface design and 11 learning process features using a questionnaire adapted from an established tool created to assess educational multimedia. Significant Spearman’s correlations were found for seven of the 14 interface design features – ‘Navigation’, ‘Learning demands’, ‘Videos’, ‘Media integration’, ‘Level of material’, ‘Information presentation’ and ‘Overall functionality’, explaining ratings of the learning process. The interplay of interface design and learning process features of educational multimedia highlight key design considerations in e-learning. An understanding of these features is relevant to the delivery of surgical training, reflecting the current state of the art in transferring static CD-ROM content to the dynamic web or creating CD/web hybrid models of education

    MOBEEZE. Natural Interaction Technologies, Virtual Reality and Artificial Intelligence for Gait Disorders Analysis and Rehabilitation in Patients with Parkinson's Disease

    Get PDF
    Parkinson's Disease (PD) is the most common degenerative disorder after Alzheimer's disease. Generally affecting elderly groups, it has a strong limiting effect on physical functioning and performance of roles, vitality and general perception of health. Since the disease is progressive, the patient knows he's going to get worse. The deterioration is significant not only in mobility but also in pain, social isolation, and emotional reactions. Freezing is a phenomenon associated with this disease and it is characterized by a motor disorder that leaves the patient literally stuck to the ground. Mobeeze is designed with the main objective of providing health personnel with a tool to analyse, evaluate and monitor the progress of patients’ disorders as well as the personalization and adaptation of rehabilitation sessions in patients with Parkinson's disease. Based on the characteristics measured in real time which will allow the strengthening effects of rehabilitation and help to assimilate them in the long term. The creation of Mobeeze allows the constitution of a system of analysis and evaluation of march disorders in real time, through natural interaction, virtual reality and artificial intelligence. In this project, we will analyse if these non-invasive technologies reduce the stress induced to the patient when he is feeling evaluated

    Unconstrained video monitoring of breathing behavior and application to diagnosis of sleep apnea

    Get PDF
    This paper presents a new real-time automated infrared video monitoring technique for detection of breathing anomalies, and its application in the diagnosis of obstructive sleep apnea. We introduce a novel motion model to detect subtle, cyclical breathing signals from video, a new 3-D unsupervised self-adaptive breathing template to learn individuals' normal breathing patterns online, and a robust action classification method to recognize abnormal breathing activities and limb movements. This technique avoids imposing positional constraints on the patient, allowing patients to sleep on their back or side, with or without facing the camera, fully or partially occluded by the bed clothes. Moreover, shallow and abdominal breathing patterns do not adversely affect the performance of the method, and it is insensitive to environmental settings such as infrared lighting levels and camera view angles. The experimental results show that the technique achieves high accuracy (94% for the clinical data) in recognizing apnea episodes and body movements and is robust to various occlusion levels, body poses, body movements (i.e., minor head movement, limb movement, body rotation, and slight torso movement), and breathing behavior (e.g., shallow versus heavy breathing, mouth breathing, chest breathing, and abdominal breathing). © 2013 IEEE

    Development of a neurofeedback-based virtual reality environment

    Get PDF
    Recent technology has continuously expanded the reaching spectre of psychotherapy. In the latest years, the development of digital environments, coupled with the evolution of sensorial hardware, has demonstrated usefulness and effectiveness in some areas of psychotherapy such as phobia treatment and attention deficit hyperactivity disorder management through neurofeedback training. However, the generality of these equipments is very expensive. In this project, an audiovisual stimuli virtual reality environment was developed, capable of displaying signals provided by an electroencephalography-based brain-computer interface. This environment has the objective of providing its user with neurofeedback training and being suited for affordable hardware equipments. Development of the aforementioned environment took place in the Unity3D ® game engine version 5.3.0f4, using C# scripting developed in Microsoft ® Visual Studio 2015 TM. As for the virtual reality display, an Oculus Rift ® development kit 1 was used for testing, together with the Oculus runtime for Windows ®, version 0.8.0.0. The used brain-computer interface was Neurosky’s Mindband TM, a research tool with a single electroencephalography channel, mediated through the ThinkGear Connector, version 3.1.8.0. The creation of this environment as an application directed towards neurofeedback training and compatible with affordable equipments is a contribution towards a reality where virtual reality is more synchronized with our society
    • …
    corecore