3,938 research outputs found

    Effectiveness of a web-based intervention aimed at healthy dietary and physical activity behavior: a randomized controlled trial about users and usage

    Get PDF
    Background:\ud Recent studies have shown the potential of Web-based interventions for changing dietary and physical activity (PA) behavior. However, the pathways of these changes are not clear. In addition, nonusage poses a threat to these interventions. Little is known of characteristics of participants that predict usage.\ud \ud Objective:\ud In this study we investigated the users and effect of the Healthy Weight Assistant (HWA), a Web-based intervention aimed at healthy dietary and PA behavior. We investigated the value of a proposed framework (including social and economic factors, condition-related factors, patient-related factors, reasons for use, and satisfaction) to predict which participants are users and which participants are nonusers. Additionally, we investigated the effectiveness of the HWA on the primary outcomes, self-reported dietary and physical activity behavior.\ud \ud Methods:\ud Our design was a two-armed randomized controlled trial that compared the HWA with a waiting list control condition. A total of 150 participants were allocated to the waiting list group, and 147 participants were allocated to the intervention group. Online questionnaires were filled out before the intervention period started and after the intervention period of 12 weeks. After the intervention period, respondents in the waiting list group could use the intervention. Objective usage data was obtained from the application itself.\ud \ud Results:\ud In the intervention group, 64% (81/147) of respondents used the HWA at least once and were categorized as “users.” Of these, 49% (40/81) used the application only once. Increased age and not having a chronic condition increased the odds of having used the HWA (age: beta = 0.04, P = .02; chronic condition: beta = 2.24, P = .003). Within the intervention group, users scored better on dietary behavior and on knowledge about healthy behavior than nonusers (self-reported diet: χ22 = 8.4, P = .02; knowledge: F1,125 = 4.194, P = .04). Furthermore, users underestimated their behavior more often than nonusers, and nonusers overestimated their behavior more often than users (insight into dietary behavior: χ22 = 8.2, P = .02). Intention-to-treat analyses showed no meaningful significant effects of the intervention. Exploratory analyses of differences between pretest and posttest scores of users, nonusers, and the control group showed that on dietary behavior only the nonusers significantly improved (effect size r = −.23, P = .03), while on physical activity behavior only the users significantly improved (effect size r = −.17, P = .03).\ud \ud Conclusions:\ud Respondents did not use the application as intended. From the proposed framework, a social and economic factor (age) and a condition-related factor (chronic condition) predicted usage. Moreover, users were healthier and more knowledgeable about healthy behavior than nonusers. We found no apparent effects of the intervention, although exploratory analyses showed that choosing to use or not to use the intervention led to different outcomes. Combined with the differences between groups at baseline, this seems to imply that these groups are truly different and should be treated as separate entities

    Applicability of the user engagement scale to mobile health : a survey-based quantitative study

    Get PDF
    Background: There has recently been exponential growth in the development and use of health apps on mobile phones. As with most mobile apps, however, the majority of users abandon them quickly and after minimal use. One of the most critical factors for the success of a health app is how to support users’ commitment to their health. Despite increased interest from researchers in mobile health, few studies have examined the measurement of user engagement with health apps. Objective: User engagement is a multidimensional, complex phenomenon. The aim of this study was to understand the concept of user engagement and, in particular, to demonstrate the applicability of a user engagement scale (UES) to mobile health apps. Methods: To determine the measurability of user engagement in a mobile health context, a UES was employed, which is a psychometric tool to measure user engagement with a digital system. This was adapted to Ada, developed by Ada Health, an artificial intelligence–powered personalized health guide that helps people understand their health. A principal component analysis (PCA) with varimax rotation was conducted on 30 items. In addition, sum scores as means of each subscale were calculated. Results: Survey data from 73 Ada users were analyzed. PCA was determined to be suitable, as verified by the sampling adequacy of Kaiser-Meyer-Olkin=0.858, a significant Bartlett test of sphericity (χ2300=1127.1; P<.001), and communalities mostly within the 0.7 range. Although 5 items had to be removed because of low factor loadings, the results of the remaining 25 items revealed 4 attributes: perceived usability, aesthetic appeal, reward, and focused attention. Ada users showed the highest engagement level with perceived usability, with a value of 294, followed by aesthetic appeal, reward, and focused attention. Conclusions: Although the UES was deployed in German and adapted to another digital domain, PCA yielded consistent subscales and a 4-factor structure. This indicates that user engagement with health apps can be assessed with the German version of the UES. These results can benefit related mobile health app engagement research and may be of importance to marketers and app developers

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    The effectiveness of mHealth interventions for maternal, newborn and child health in low- and middle-income countries:Protocol for a systematic review and meta-analysis

    Get PDF
    Rates of maternal, newborn and child (MNCH) mortality and morbidity are vastly greater in low– than in high–income countries and represent a major source of global health inequity. A host of systemic, economic, geopolitical and sociocultural factors have been implicated. Mobile information and communication technologies hold potential to ameliorate several of these challenges by supporting coordinated and evidence–based care, facilitating community based health services and enabling citizens to access health information and support. mHealth has attracted considerable attention as a means of supporting maternal, newborn and child health in developing countries and research to assess the impacts of mHealth interventions is increasing. While a number of expert reviews have attempted to summarise this literature, there remains a need for a fully systematic review employing gold standard methods of evidence capture, critical appraisal and meta–analysis, in order to comprehensively map, quality assess and synthesise this body of knowledge

    Integrating Taxonomies into Theory-Based Digital Health Interventions for Behavior Change: A Holistic Framework

    Full text link
    Digital health interventions have been emerging in the last decade. Due to their interdisciplinary nature, digital health interventions are guided and influenced by theories (e.g., behavioral theories, behavior change technologies, persuasive technology) from different research communities. However, digital health interventions are always coded using various taxonomies and reported in insufficient perspectives. The inconsistency and incomprehensiveness will bring difficulty for conducting systematic reviews and sharing contributions among communities. Based on existing related work, therefore, we propose a holistic framework that embeds behavioral theories, behavior change technique (BCT) taxonomy, and persuasive system design (PSD) principles. Including four development steps, two toolboxes, and one workflow, our framework aims to guide digital health intervention developers to design, evaluate, and report their work in a formative and comprehensive way

    Persuasive system design does matter: a systematic review of adherence to web-based interventions

    Get PDF
    Background: Although web-based interventions for promoting health and health-related behavior can be effective, poor adherence is a common issue that needs to be addressed. Technology as a means to communicate the content in web-based interventions has been neglected in research. Indeed, technology is often seen as a black-box, a mere tool that has no effect or value and serves only as a vehicle to deliver intervention content. In this paper we examine technology from a holistic perspective. We see it as a vital and inseparable aspect of web-based interventions to help explain and understand adherence. Objective: This study aims to review the literature on web-based health interventions to investigate whether intervention characteristics and persuasive design affect adherence to a web-based intervention. Methods: We conducted a systematic review of studies into web-based health interventions. Per intervention, intervention characteristics, persuasive technology elements and adherence were coded. We performed a multiple regression analysis to investigate whether these variables could predict adherence. Results: We included 101 articles on 83 interventions. The typical web-based intervention is meant to be used once a week, is modular in set-up, is updated once a week, lasts for 10 weeks, includes interaction with the system and a counselor and peers on the web, includes some persuasive technology elements, and about 50% of the participants adhere to the intervention. Regarding persuasive technology, we see that primary task support elements are most commonly employed (mean 2.9 out of a possible 7.0). Dialogue support and social support are less commonly employed (mean 1.5 and 1.2 out of a possible 7.0, respectively). When comparing the interventions of the different health care areas, we find significant differences in intended usage (p = .004), setup (p < .001), updates (p < .001), frequency of interaction with a counselor (p < .001), the system (p = .003) and peers (p = .017), duration (F = 6.068, p = .004), adherence (F = 4.833, p = .010) and the number of primary task support elements (F = 5.631, p = .005). Our final regression model explained 55% of the variance in adherence. In this model, a RCT study as opposed to an observational study, increased interaction with a counselor, more frequent intended usage, more frequent updates and more extensive employment of dialogue support significantly predicted better adherence. Conclusions: Using intervention characteristics and persuasive technology elements, a substantial amount of variance in adherence can be explained. Although there are differences between health care areas on intervention characteristics, health care area per se does not predict adherence. Rather, the differences in technology and interaction predict adherence. The results of this study can be used to make an informed decision about how to design a web-based intervention to which patients are more likely to adher

    MOSAIC roadmap for mobile collaborative work related to health and wellbeing.

    Get PDF
    The objective of the MOSAIC project is to accelerate innovation in Mobile Worker Support Environments. For that purpose MOSAIC develops visions and illustrative scenarios for future collaborative workspaces involving mobile and location-aware working. Analysis of the scenarios is input to the process of road mapping with the purpose of developing strategies for R&D leading to deployment of innovative mobile work technologies and applications across different domains. One of the application domains where MOSAIC is active is health and wellbeing. This paper builds on another paper submitted to this same conference, which presents and discusses health care and wellbeing specific scenarios. The aim is to present an early form of a roadmap for validation

    Managing the Ethical Dimensions of Brain-Computer Interfaces in eHealth: An SDLC-based Approach

    Get PDF
    A growing range of brain-computer interface (BCI) technologies is being employed for purposes of therapy and human augmentation. While much thought has been given to the ethical implications of such technologies at the ‘macro’ level of social policy and ‘micro’ level of individual users, little attention has been given to the unique ethical issues that arise during the process of incorporating BCIs into eHealth ecosystems. In this text a conceptual framework is developed that enables the operators of eHealth ecosystems to manage the ethical components of such processes in a more comprehensive and systematic way than has previously been possible. The framework’s first axis defines five ethical dimensions that must be successfully addressed by eHealth ecosystems: 1) beneficence; 2) consent; 3) privacy; 4) equity; and 5) liability. The second axis describes five stages of the systems development life cycle (SDLC) process whereby new technology is incorporated into an eHealth ecosystem: 1) analysis and planning; 2) design, development, and acquisition; 3) integration and activation; 4) operation and maintenance; and 5) disposal. Known ethical issues relating to the deployment of BCIs are mapped onto this matrix in order to demonstrate how it can be employed by the managers of eHealth ecosystems as a tool for fulfilling ethical requirements established by regulatory standards or stakeholders’ expectations. Beyond its immediate application in the case of BCIs, we suggest that this framework may also be utilized beneficially when incorporating other innovative forms of information and communications technology (ICT) into eHealth ecosystems
    • 

    corecore