303 research outputs found

    Multimedia data mining for automatic diabetic retinopathy screening

    No full text
    International audience— This paper presents TeleOphta, an automatic sys-tem for screening diabetic retinopathy in teleophthalmology networks. Its goal is to reduce the burden on ophthalmologists by automatically detecting non referable examination records, i.e. examination records presenting no image quality problems and no pathological signs related to diabetic retinopathy or any other retinal pathology. TeleOphta is an attempt to put into practice years of algorithmic developments from our groups. It combines image quality metrics, specific lesion detectors and a generic pathological pattern miner to process the visual content of eye fundus photographs. This visual information is further combined with contextual data in order to compute an abnormality risk for each examination record. The TeleOphta system was trained and tested on a large dataset of 25,702 examination records from the OPHDIAT screening network in Paris. It was able to automatically detect 68% of the non referable examination records while achieving the same sensitivity as a second ophthalmologist. This suggests that it could safely reduce the burden on ophthalmologists by 56%

    Deep and handcrafted feature supported diabetic retinopathy detection: A study

    Get PDF
    The eye is the prime sensory organ in physiology, and the abnormality in the eye severely influences the vision system. Therefore, eye irregularity is commonly assessed using imaging schemes, and Fundus Retinal Image (FRI) supported eye screening is one of the ophthalmological practices. This work proposed a Deep-Learning Procedure (DLP) to recognize Diabetic Retinopathy (DR) in FI. The proposed work presents the experimental work with different DLP methods found in the literature. This work is executed with two modes; (i) DR detection using conventional deep-features and (ii) DR discovery using deep ensemble features. To demonstrate this work, 1800 fundus images (900 regular and 900 DR class) are considered for the assessment, and the advantage of proposed plan is confirmed using various performance metrics. The experimental outcome of this study confirms that the AlexNet-based detection provides a better detection (>96%), and the deep ensemble features of AlexNet, VGG16, and ResNet18 provide a detection accuracy of >98% on the chosen FRI database

    Automated microaneurysm detection algorithms applied to diabetic retinopathy retinal images

    Get PDF
    Diabetic retinopathy is the commonest cause of blindness in working age people. It is characterised and graded by the development of retinal microaneurysms, haemorrhages and exudates. The damage caused by diabetic retinopathy can be prevented if it is treated in its early stages. Therefore, automated early detection can limit the severity of the disease, improve the follow-up management of diabetic patients and assist ophthalmologists in investigating and treating the disease more efficiently. This review focuses on microaneurysm detection as the earliest clinically localised characteristic of diabetic retinopathy, a frequently observed complication in both Type 1 and Type 2 diabetes. Algorithms used for microaneurysm detection from retinal images are reviewed. A number of features used to extract microaneurysm are summarised. Furthermore, a comparative analysis of reported methods used to automatically detect microaneurysms is presented and discussed. The performance of methods and their complexity are also discussed

    DeepOpht: Medical Report Generation for Retinal Images via Deep Models and Visual Explanation

    Full text link
    In this work, we propose an AI-based method that intends to improve the conventional retinal disease treatment procedure and help ophthalmologists increase diagnosis efficiency and accuracy. The proposed method is composed of a deep neural networks-based (DNN-based) module, including a retinal disease identifier and clinical description generator, and a DNN visual explanation module. To train and validate the effectiveness of our DNN-based module, we propose a large-scale retinal disease image dataset. Also, as ground truth, we provide a retinal image dataset manually labeled by ophthalmologists to qualitatively show, the proposed AI-based method is effective. With our experimental results, we show that the proposed method is quantitatively and qualitatively effective. Our method is capable of creating meaningful retinal image descriptions and visual explanations that are clinically relevant.Comment: Accepted to IEEE WACV 202

    Modelling on-demand preprocessing framework towards practical approach in clinical analysis of diabetic retinopathy

    Get PDF
    Diabetic retinopathy (DR) refers to a complication of diabetes and a prime cause of vision loss in middle-aged people. A timely screening and diagnosis process can reduce the risk of blindness. Fundus imaging is mainly preferred in the clinical analysis of DR. However; the raw fundus images are usually subjected to artifacts, noise, low and varied contrast, which is very hard to process by human visual systems and automated systems. In the existing literature, many solutions are given to enhance the fundus image. However, such approaches are particular and limited to a specific objective that cannot address multiple fundus images. This paper has presented an on-demand preprocessing frame work that integrates different techniques to address geometrical issues, random noises, and comprehensive contrast enhancement solutions. The performance of each preprocessing process is evaluated against peak signal-to-noise ratio (PSNR), and brightness is quantified in the enhanced image. The motive of this paper is to offer a flexible approach of preprocessing mechanism that can meet image enhancement needs based on different preprocessing requirements to improve the quality of fundus imaging towards early-stage diabetic retinopathy identification

    Image mining: issues, frameworks and techniques

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in significantly large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. Despite the development of many applications and algorithms in the individual research fields cited above, research in image mining is still in its infancy. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining at the end of this paper

    A Review on Detection of Diabetic Retinopathy using Deep Learning and Transfer Learning based Strategies

    Get PDF
    Diabetic Retinopathy (DR) is considered to be one of the most widely observed and a complex variation of diabetes and stands as a leading cause of blindness globally. The occurrence of DR causes impairment in the retinal blood vessels and leads to unusual growth of blood arteries in the eye. Manual examinations and analysis suggests that the prevalence of DR has been enormously growing at an exponential rate and has already registered for more than 160 million cases worldwide. On the other hand, its diagnostic screening is not only challenging, but also computationally expensive at the same time. Due to the highlighting importance of its early diagnosis in terms of treatment, multiple concepts to DR detection have been used in the past few years. However, research in recent times has resulted in the fact that deep learning based CNN structures and Transfer Learning based MedNets have been popularly used in DR detection, due to its superior performance in the medical domain. As a result of such advancements in Deep Learning methodologies, this article proposes a review on automated approaches used to detect diabetic retinopathy using image processing and disease classification techniques. The review is further preceded with a comprehensive analysis on training a model with an already pre-trained network whose primary goal is to generate useful information and provide it to diabetic researchers, medical practitioners and patients
    • …
    corecore