4,213 research outputs found

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Virtual Institutes: Between Immersion and Communication

    Get PDF
    In the two expressions "virtual reality" and "virtual community", the term "virtual" has different meanings. A virtual reality is a depiction or, more generally speaking, a sensuous representation of reality that allows - mainly by means of interactivity - to experience various features of reality without actually being in contact with the reality depicted. Therefore, any interactive depiction that is able to imitate reality to such an extent that a high degree of sensory-motor immersion becomes possible is called a virtual reality (Heim 1998, 6f). Since reality is always much more complex than its depiction and full of unpredictable surprises, hardly ever a user has doubts about the difference between the depiction and the thing depicted. Nevertheless, there are good reasons for preferring the imitation to the reality: at least, the imitation is usually not as dangerous as reality sometimes turns out to be. Accordingly, quite different platforms for virtual institutes may be used emphasizing either the immersion aspect or the communication aspect. The decision for a platform depends on the goals pursued with the institute: text-based chat systems allow virtual communities to flourish, single-user VRML scenes convey a highly immersive 3D impression to its users. This is particularly true for virtual institutes realized as a 3D environment, as well as for corresponding virtual communities since 3D environments are adequate for certain tasks only. As an overall framework for the evaluation it is helpful to distinguish three major application areas: research, presentation, and communicative work. The Virtual Institute for Image Science (VIB), which we would like to describe in the following (3) as a case study, is almost exclusively designed for the third task: communicative working. It intends to provide a working space persons can share for joint projects despite being physically separated. Before describing the VIB in more detail we would like to give an overview of virtual institutes between the poles of realistic immersion and of communication in a community (2). The discussion of the case study leads to some more general considerations about the balance virtual institutes must find along that bi-polar dimension (4). In the concluding remarks we focus on the technical tools for virtual communities in 3D presently available

    Concurrent engineering research center

    Get PDF
    The projects undertaken by The Concurrent Engineering Research Center (CERC) at West Virginia University are reported and summarized. CERC's participation in the Department of Defense's Defense Advanced Research Project relating to technology needed to improve the product development process is described, particularly in the area of advanced weapon systems. The efforts committed to improving collaboration among the diverse and distributed health care providers are reported, along with the research activities for NASA in Independent Software Verification and Validation. CERC also takes part in the electronic respirator certification initiated by The National Institute for Occupational Safety and Health, as well as in the efforts to find a solution to the problem of producing environment-friendly end-products for product developers worldwide. The 3M Fiber Metal Matrix Composite Model Factory Program is discussed. CERC technologies, facilities,and personnel-related issues are described, along with its library and technical services and recent publications

    The CSCW paradigm for software development

    Get PDF
    People work together to solve a wide variety of problems using different forms of cooperation for each class of problem. Modern technology is complex, and therefore it is unusual for an individual to attempt the development of a major project single-handedly. In an attempt to provide computer-based support for the problems that arise when two or more people attempt to cooperate to perform a task or solve a problem, the area of Computer Supported Cooperative Work (CSCW) becomes relevant. The software development process almost invariably involves cooperation that crosses group, professional, and subcultural boundaries. The complexity of software development demands that highly integrated groups of analysts, designers, and users are involved in the process. Many development activities may occur concurrently. The area of CSCW and advanced information technology, with its enormous capabilities for transmitting and storing information, holds considerable promise for the software development process.ComputingM. Sc. (Information Systems

    Fourth ERCIM workshop on e-mobility

    Get PDF

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio
    • …
    corecore