358 research outputs found

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Hybrid FLUTE/DASH video delivery over mobile wireless networks

    Full text link
    This paper describes how FLUTE (File Delivery over Unidirectional Transport) and DASH (Dynamic Adaptive Streaming over HTTP) can be used to provide mobile video streaming services over broadcast wireless networks. FLUTE is a multicast protocol for multimedia file download. In this proposal, the protocol is adapted to provide video streaming services in crowded environments. Thus, video is delivered over a single connection to all viewers, reducing the traffic in the network. FLUTE incorporates an AL-FEC (Application Layered Forward Error Correction) mechanism in order to improve the reliability of the broadcast communication channel. For streaming applications, AL-FEC improves the relationship between the PSNR (Peak Signal-to-Noise Ratio) of the received video and the bandwidth allocated to the broadcast connection. The AL-FEC hereby presented applies simple unequal error protection schemes to favor the download of key frames. Furthermore, the proposal is based on the same video segmentation mechanism as DASH and therefore, clients can connect to a DASH repository to repair errors in the segments. This paper shows that FLUTE and DASH can be seamlessly integrated into a hybrid broadcast/unicast streaming technology, providing flexibility to trade off PSNR and bandwidth depending on the conditions of the mobile network.This work was supported by the 11012 ICARE (Innovative Cloud Architecture for Real Entertainment) project within the ITEA 2 Call 6 Program of the European Union.Belda Ortega, R.; De Fez Lava, I.; Fraile Gil, F.; Arce Vila, P.; Guerri Cebollada, JC. (2014). Hybrid FLUTE/DASH video delivery over mobile wireless networks. Transactions on Emerging Telecommunications Technologies. 25(11):1070-1082. doi:10.1002/ett.2804S107010822511ETSI TS 126 346 v11.3.0. Universal Mobile Telecommunications Systems (UMTS); LTE; Multimedia Broadcast/Multicast Service (MBMS); Protocols and Codecs 2013Lecompte, D., & Gabin, F. (2012). Evolved multimedia broadcast/multicast service (eMBMS) in LTE-advanced: overview and Rel-11 enhancements. IEEE Communications Magazine, 50(11), 68-74. doi:10.1109/mcom.2012.6353684Stockhammer T Luby MG DASH in mobile networks and services. Presented at IEEE Visual Communications and Image Processing (VCIP) , 2012Seeling, P., & Reisslein, M. (2012). Video Transport Evaluation With H.264 Video Traces. IEEE Communications Surveys & Tutorials, 14(4), 1142-1165. doi:10.1109/surv.2011.082911.00067Zhao, S., Tuninetti, D., Ansari, R., & Schonfeld, D. (2012). Multiple description coding over multiple correlated erasure channels. Transactions on Emerging Telecommunications Technologies, 23(6), 522-536. doi:10.1002/ett.2507Lin, C.-H., Wang, Y.-C., Shieh, C.-K., & Hwang, W.-S. (2012). An unequal error protection mechanism for video streaming over IEEE 802.11e WLANs. Computer Networks, 56(11), 2590-2599. doi:10.1016/j.comnet.2012.04.004Paila T Walsh R Luby M Roca V Lehtonen R FLUTE - file delivery over unidirectional transport. 2012Luby M Watson M Vicisano L Asynchronous layered coding (ALC) protocol instantiation. 2010Ameigeiras, P., Ramos-Munoz, J. J., Navarro-Ortiz, J., & Lopez-Soler, J. M. (2012). Analysis and modelling of YouTube traffic. Transactions on Emerging Telecommunications Technologies, 23(4), 360-377. doi:10.1002/ett.2546ISO/IEC 23009-1. Dynamic adaptive streaming over HTTP (DASH) - Part 1: media presentation description and segment formats 2012De Fez, I., Fraile, F., Belda, R., & Guerri, J. C. (2012). Analysis and Evaluation of Adaptive LDPC AL-FEC Codes for Content Download Services. IEEE Transactions on Multimedia, 14(3), 641-650. doi:10.1109/tmm.2012.2190392Jenkac, H., Stockhammer, T., & Wen Xu. (2006). Asynchronous and reliable on-demand media broadcast. IEEE Network, 20(2), 14-20. doi:10.1109/mnet.2006.1607891Neumann C Roca V Scalable video streaming over ALC (SVSoA): a solution for the large scale multicast distribution of videos. Presented at 1st Int. Workshop on SMDI , 2004Lederer S Müller C Timmerer C Dynamic adaptive streaming over HTTP dataset Proc. of the ACM Conference on Multimedia Systems (MMSys) 2012 89 94Blender Foundation webpage http://www.blender.org/blenderorg/Bai, H., & Atiquzzaman, M. (2003). Error modeling schemes for fading channels in wireless communications: A survey. IEEE Communications Surveys & Tutorials, 5(2), 2-9. doi:10.1109/comst.2003.5341334Ohm, J.-R. (2004). Multimedia Communication Technology. Signals and Communication Technology. doi:10.1007/978-3-642-18750-

    Optimized Network-coded Scalable Video Multicasting over eMBMS Networks

    Get PDF
    Delivery of multicast video services over fourth generation (4G) networks such as 3GPP Long Term Evolution-Advanced (LTE-A) is gaining momentum. In this paper, we address the issue of efficiently multicasting layered video services by defining a novel resource allocation framework that aims to maximize the service coverage whilst keeping the radio resource footprint low. A key point in the proposed system mode is that the reliability of multicast video services is ensured by means of an Unequal Error Protection implementation of the Network Coding (UEP-NC) scheme. In addition, both the communication parameters and the UEP-NC scheme are jointly optimized by the proposed resource allocation framework. Numerical results show that the proposed allocation framework can significantly increase the service coverage when compared to a conventional Multi-rate Transmission (MrT) strategy.Comment: Proc. of IEEE ICC 2015 - Mobile and Wireless Networking Symposium, to appea

    Optical network technologies for future digital cinema

    Get PDF
    Digital technology has transformed the information flow and support infrastructure for numerous application domains, such as cellular communications. Cinematography, traditionally, a film based medium, has embraced digital technology leading to innovative transformations in its work flow. Digital cinema supports transmission of high resolution content enabled by the latest advancements in optical communications and video compression. In this paper we provide a survey of the optical network technologies for supporting this bandwidth intensive traffic class. We also highlight the significance and benefits of the state of the art in optical technologies that support the digital cinema work flow

    A Prototype Modelling of Ebers for Video Transmission in Wireless Adhoc Network

    Get PDF
    Provisioning of video streaming over ad hoc wireless networks exhibits challenges associated with high packet loss rates and are delay sensitive Excessive packet loss can cause significant degradation in quality of video perceived by users of real-time video applications The recent studies suggest that Forward Error Correction FEC is a good technique for decreasing the negative impact of packet loss on video quality in error control scheme This paper introduces an Estimation based Error Reduction Scheme EBERS to support video communication in ad hoc wireless networks The EBERS considers a frame estimation parameter to support varied bandwidths and attain the delay requirements to support video communication It is also responsible for improvising the QoS offered The EBERS considers layered and embodies distortion limiting features owing to which reduced forward error correction is achieved thus obtaining reduced frame errors transmission errors and retransmission of frames Thereby obtaining high degree of quality of service QoS The comparative study conducted proves the efficiency of the EBERS scheme over the existing mechanism

    S-RLNC based MAC Optimization for Multimedia Data Transmission over LTE/LTE-A Network

    Get PDF
    The high pace emergence in communication systems and associated demands has triggered academia-industries to achieve more efficient solution for Quality of Service (QoS) delivery for which recently introduced Long Term Evolution (LTE) or LTE-Advanced has been found as a promising solution. However, enabling QoS and Quality of Experience (QoE) delivery for multimedia data over LTE has always been a challenging task. QoS demands require reliable data transmission with minimum signalling overheads, computational complexity, minimum latency etc, for which classical Hybrid Automatic Repeat Request (HREQ) based LTE-MAC is not sufficient. To alleviate these issues, in this paper a novel and robust Multiple Generation Mixing (MGM) assisted Systematic Random Linear Network Coding (S-RLNC) model is developed to be used at the top of LTE MAC protocol stack for multimedia data transmission over LTE/LTE-A system. Our proposed model incorporated interleaving and coding approach along with MGM to ensure secure, resource efficient and reliable multiple data delivery over LTE systems. The simulation results reveal that our proposed S-RLNC-MGM based MAC can ensure QoS/QoE delivery over LTE systems for multimedia data communication

    Multicast Services for Multimedia Collaborative Applications

    Get PDF
    This work aims at providing multicast services for multimedia collaborative applications over large inter-networks such as the Internet. Multimedia collaborative applications are typically of small group size, slow group membership dynamics, and awareness of participants\u27 identities and locations. Moreover, they usually consist of several components such as audio, video, shared whiteboard, and single user application sharing engines that collectively help make the collaboration session successful. Each of these components has its demands from the communication layer that may differ from one component to another. This dissertation identifies the overall characteristics of multimedia collaborative applications and their individual components. It also determines the service requirements of the various components from the communication layer. Based on the analysis done in the thesis, new techniques of multicast services that are more suitable for multimedia collaborative applications are introduced. In particular, the focus will be on multicast address management and connection control, routing, congestion and flow control, and error control. First, we investigate multicast address management and connection control and provide a new technique for address management based on address space partitioning. Second, we study the problem of multicast routing and introduce a new approach that fits the real time nature of multimedia applications. Third, we explore the problem of congestion and flow control and introduce a new mechanism that takes into consideration the heterogeneity within the network and within the processing capabilities of the end systems. Last, we exploit the problem of error control and present a solution that supports various levels of error control to the different components within the collaboration session. We present analytic as well as simulation studies to evaluate our work, which show that our techniques outperform previous ones

    Forward Error Correction for Multipath Media Streaming

    Full text link
    corecore