55,991 research outputs found

    A cloud-enabled small cell architecture in 5G networks for broadcast/multicast services

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The evolution of 5G suggests that communication networks become sufficiently flexible to handle a wide variety of network services from various domains. The virtualization of small cells as envisaged by 5G, allows enhanced mobile edge computing capabilities, thus enabling network service deployment and management near the end user. This paper presents a cloud-enabled small cell architecture for 5G networks developed within the 5G-ESSENCE project. This paper also presents the conformity of the proposed architecture to the evolving 5G radio resource management architecture. Furthermore, it examines the inclusion of an edge enabler to support a variety of virtual network functions in 5G networks. Next, the improvement of specific key performance indicators in a public safety use case is evaluated. Finally, the performance of a 5G enabled evolved multimedia broadcast multicast services service is evaluated.Peer ReviewedPostprint (author's final draft

    NGN PLATFORMS FOR EMERGENCY

    Get PDF

    A review of personal communications services

    Get PDF
    This article can be accessed from the link below - Copyright @ 2009 Nova Science Publishers, LtdPCS is an acronym for Personal Communications Service. PCS has two layers of meaning. At the low layer, from the technical perspective, PCS is a 2G mobile communication technology operating at the 1900 MHz frequency range. At the upper layer, PCS is often used as an umbrella term that includes various wireless access and personal mobility services with the ultimate goal of enabling users to freely communicate with anyone at anytime and anywhere according to their demand. Ubiquitous PCS can be implemented by integrating the wireless and wireline systems on the basis of intelligent network (IN), which provides network functions of terminal and personal mobility. In this chapter, we focus on various aspects of PCS except location management. First we describe the motivation and technological evolution for personal communications. Then we introduce three key issues related to PCS: spectrum allocation, mobility, and standardization efforts. Since PCS involves several different communication technologies, we introduce its heterogeneous and distributed system architecture. IN is also described in detail because it plays a critical role in the development of PCS. Finally, we introduce the application of PCS and its deployment status since the mid-term of 1990’s.This work was supported in part by the National Natural Science Foundation of China under Grant No. 60673159 and 70671020; the National High-Tech Research and Development Plan of China under Grant No. 2006AA01Z214, and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    UAV-Empowered Disaster-Resilient Edge Architecture for Delay-Sensitive Communication

    Full text link
    The fifth-generation (5G) communication systems will enable enhanced mobile broadband, ultra-reliable low latency, and massive connectivity services. The broadband and low-latency services are indispensable to public safety (PS) communication during natural or man-made disasters. Recently, the third generation partnership project long term evolution (3GPPLTE) has emerged as a promising candidate to enable broadband PS communications. In this article, first we present six major PS-LTE enabling services and the current status of PS-LTE in 3GPP releases. Then, we discuss the spectrum bands allocated for PS-LTE in major countries by international telecommunication union (ITU). Finally, we propose a disaster resilient three-layered architecture for PS-LTE (DR-PSLTE). This architecture consists of a software-defined network (SDN) layer to provide centralized control, an unmanned air vehicle (UAV) cloudlet layer to facilitate edge computing or to enable emergency communication link, and a radio access layer. The proposed architecture is flexible and combines the benefits of SDNs and edge computing to efficiently meet the delay requirements of various PS-LTE services. Numerical results verified that under the proposed DR-PSLTE architecture, delay is reduced by 20% as compared with the conventional centralized computing architecture.Comment: 9,

    Asynchronously Replicated Shared Workspaces for a Multi-Media Annotation Service over Internet

    Get PDF
    This paper describes a world wide collaboration system through multimedia Post-its (user generated annotations). DIANE is a service to create multimedia annotations to every application output on the computer, as well as to existing multimedia annotations. Users collaborate by registering multimedia documents and user generated annotation in shared workspaces. However, DIANE only allows effective participation in a shared workspace over a high performance network (ATM, fast Ethernet) since it deals with large multimedia object. When only slow or unreliable connections are available between a DIANE terminal and server, useful work becomes impossible. To overcome these restrictions we need to replicate DIANE servers so that users do not suffer degradation in the quality of service. We use the asynchronous replication service ODIN to replicate the shared workspaces to every interested site in a transparent way to users. ODIN provides a cost-effective object replication by building a dynamic virtual network over Internet. The topology of this virtual network optimizes the use of network resources while it satisfies the changing requirements of the users
    • …
    corecore