41 research outputs found

    LTE 네트워크에서 비디오 전달 서비스의 성능 향상

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2015. 2. 권태경.LTE includes an enhanced multimedia broadcast/multicast service(eMBMS)but delay-sensitive real-time video streaming requires the combination of efficient handling of wireless link bandwidth and reduced handover delays, which remains a challenge. The 3GPP standard introduces a Multimedia Broadcast and multicast service over a Single Frequency Network (MBSFN) area which is a group of base stations broadcasting the same multicast packets. It can reduce the handover delay within MBSFN areas, but raises the traffic load on LTE networks. In this dissertation, we first presents an MBSFN architecture based on location management areas (LMAs) which can increase the sizes of MBSFN areas to reduce the average handover delay without too much bandwidth waste. An analytical model is developed to quantify service disruption time, bandwidth usage, and blocking probability for different sizes of MBSFN areas and LMAs while considering user mobility, user distribution, and eMBMS session popularity. Using this model, we also propose how to determine the best sizes of MBSFN areas and LMAs along with performance guarantees. Analytical and simulation results demonstrate that our LMA-based MBSFN scheme can achieve bandwidth-efficient multicast delivery while retaining an acceptable service disruption time. We next propose to transmit the real-time video streaming packets of eMBMSs proactively and probabilistically, so that the average handover delay perceived by a user is stochastically guaranteed. To quantify the tradeoff between the perceived handover delay and the bandwidth overhead of proactive transmissions, we develop an analytical model considering user mobility, user distribution, and session popularity. Comprehensive simulation is carried out to verify the analysis. On the other hand, hypertext transfer protocol (HTTP) based adaptive streaming (HAS) is expected to be a dominant technique for non-real-time video delivery in LTE networks. In this dissertation, we first analyze the root causes of the problems of the existing HAS techniques. Based on the insights gained from our analysis, we propose a network-side HAS solution to provide a fair, efficient, and stable video streaming service. The key characteristics of our solution are: (i) unification of video- and data-users into a single utility framework, (ii) direct rate control conveying the assigned rates to the video client through overwritten HTTP Response messages, and (iii) rate allocation for stability by a stateful approach. By the experiments conducted in a real LTE femtocell network, we compare the proposed solution with state-of-the-art HAS solutions. We reveal that our solution (i) enhances the average video bitrates, (ii) achieves the stability of video quality, and (iii) supports the control of the balance between video- and data-users.Abstract i I. Introduction 1 II. Performance Improvements on Real-time Multicast Video Delivery 4 2.1 Introduction 4 2.2 Related Work 7 2.3 Location Management Area Based MBSFN 9 2.3.1 Location Management Area (LMA) 10 2.3.2 Handover Delays 12 2.3.3 LMA-based MBSFN Area Planning 12 2.4 Performance Analysis 14 2.4.1 Disruption Time 17 2.4.2 Bandwidth Usage 20 2.4.3 Blocking Probability 21 2.5 Numerical Results 23 2.5.1 Effect of NZ and NL 24 2.5.2 Deciding NZ and NL 27 2.5.3 Effects of v and rho* 31 2.5.4 Effect of alpha 32 2.6 Simulation Results 35 2.7 Conclusion 37 III. Proactive Approach for LMA-based MBSFN 39 3.1 Introduction 39 3.2 Network and MBSFN Modeling 41 3.3 Proactive LMA-based MBSFN 44 3.3.1 Problem Formulation 45 3.3.2 Overall procedure 47 3.4 Performance Evaluation 48 3.4.1 Simulation Setup 48 3.4.2 Computation of pi 50 3.4.3 Simulation Results 51 3.5 Conclusions 53 IV. Performance Improvements on HTTP Adaptive Video Streaming 55 4.1 Introduction 55 4.2 Related Work 57 4.3 Problem Definition 59 4.4 Utility-aware Network-side Streaming Approach 62 4.4.1 Streaming Proxy (SP) 63 4.4.2 Message Flows 65 4.4.3 Characteristics 67 4.5 Bitrate Assignment 68 4.5.1 Bitrate Calculation 69 4.5.2 Enhancing Stability 70 4.5.3 Algorithm for Continuous Bitrates 71 4.5.4 Handling the Bottleneck of Wired Networks 71 4.6 Simulation 73 4.6.1 Static Scenario 73 4.6.2 Mobile Scenarios 75 4.6.3 Algorithm for Continuous Bitrates 77 4.7 Experiments 78 4.7.1 Implementation of DASH Player 79 4.7.2 Implementation of eNB 80 4.7.3 Implementation of Streaming Proxy 83 4.7.4 Experimental Results 83 4.8 Conclusion 87 V. Summary & FutureWork 89 Bibliography 92Docto

    Increased energy efficiency in LTE networks through reduced early handover

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Long Term Evolution (LTE) is enormously adopted by several mobile operators and has been introduced as a solution to fulfil ever-growing Users (UEs) data requirements in cellular networks. Enlarged data demands engage resource blocks over prolong time interval thus results into more dynamic power consumption at downlink in Basestation. Therefore, realisation of UEs requests come at the cost of increased power consumption which directly affects operator operational expenditures. Moreover, it also contributes in increased CO2 emissions thus leading towards Global Warming. According to research, Global Information and Communication Technology (ICT) systems consume approximately 1200 to 1800 Terawatts per hour of electricity annually. Importantly mobile communication industry is accountable for more than one third of this power consumption in ICT due to increased data requirements, number of UEs and coverage area. Applying these values to global warming, telecommunication is responsible for 0.3 to 0.4 percent of worldwide CO2 emissions. Moreover, user data volume is expected to increase by a factor of 10 every five years which results in 16 to 20 percent increase in associated energy consumption which directly effects our environment by enlarged global warming. This research work focuses on the importance of energy saving in LTE and initially propose bandwidth expansion based energy saving scheme which combines two resource blocks together to form single super RB, thereby resulting in reduced Physical Downlink Control Channel Overhead (PDCCH). Thus, decreased PDCCH overhead helps in reduced dynamic power consumption up to 28 percent. Subsequently, novel reduced early handover (REHO) based idea is proposed and combined with bandwidth expansion to form enhanced energy ii saving scheme. System level simulations are performed to investigate the performance of REHO scheme; it was found that reduced early handover provided around 35% improved energy saving while compared to LTE standard in 3rd Generation Partnership Project (3GPP) based scenario. Since there is a direct relationship between energy consumption, CO2 emissions and vendors operational expenditure (OPEX); due to reduced power consumption and increased energy efficiency, REHO subsequently proven to be a step towards greener communication with lesser CO2 footprint and reduced operational expenditure values. The main idea of REHO lies in the fact that it initiate handovers earlier and turn off freed resource blocks as compare to LTE standard. Therefore, the time difference (Transmission Time Intervals) between REHO based early handover and LTE standard handover is a key component for energy saving achieved, which is estimated through axiom of Euclidean geometry. Moreover, overall system efficiency is investigated through the analysis of numerous performance related parameters in REHO and LTE standard. This led to a key finding being made to guide the vendors about the choice of energy saving in relation to radio link failure and other important parameters

    PROCESS FOR BREAKING DOWN THE LTE SIGNAL TO EXTRACT KEY INFORMATION

    Get PDF
    The increasingly important role of Long Term Evolution (LTE) has increased security concerns among the service providers and end users and made security of the network even more indispensable. The main thrust of this thesis is to investigate if the LTE signal can be broken down in a methodical way to obtain information that would otherwise be private; e.g., the Global Positioning System (GPS) location of the user equipment/base station or identity (ID) of the user. The study made use of signal simulators and software to analyze the LTE signal to develop a method to remove noise, breakdown the LTE signal and extract desired information. From the simulation results, it was possible to extract key information in the downlink like the Downlink Control Information (DCI), Cell-Radio Network Temporary Identifier (C-RNTI) and physical Cell Identity (Cell-ID). This information can be modified to cause service disruptions in the network within a reasonable amount of time and with modest computing resources.Defence Science and Technology Agency, SingaporeApproved for public release; distribution is unlimited

    Traffic and mobility management in large-scale networks of small cells

    Get PDF
    The growth in user demand for higher mobile data rates is driving Mobile Network Operators (MNOs) and network infrastructure vendors towards the adoption of innovative solutions in areas that span from physical layer techniques (e.g., carrier aggregation, massive MIMO, etc.) to the Radio Access Network and the Evolved Packet Core, amongst other. In terms of network capacity, out of a millionfold increase since 1957, the use of wider spectrum (25x increase), the division of spectrum into smaller resources (5x), and the introduction of advanced modulation and coding schemes (5x) have played a less significant role than the improvements in system capacity due to cell size reduction (1600x). This justifies the academic and industrial interest in short-range, low-power cellular base stations, such as small cells. The shift from traditional macrocell-based deployments towards heterogeneous cellular networks raises the need for new architectural and procedural frameworks capable of providing a seamless integration of massive deployments of small cells into the existing cellular network infrastructure. This is particularly challenging for large-scale, all-wireless networks of small cells (NoS), where connectivity amongst base stations is provided via a wireless multi-hop backhaul. Networks of small cells are a cost-effective solution for improving network coverage and capacity in high user-density scenarios, such as transportation hubs, sports venues, convention centres, dense urban areas, shopping malls, corporate premises, university campuses, theme parks, etc. This Ph.D. Thesis provides an answer to the following research question: What is the architectural and procedural framework needed to support efficient traffic and mobility management mechanisms in massive deployments of all-wireless 3GPP Long-Term Evolution networks of small cells? In order to do so, we address three key research challenges in NoS. First, we present a 3GPP network architecture capable of supporting large-scale, all-wireless NoS deployments in the Evolved Packet System. This involves delegating core network functions onto new functional entities in the network of small cells, as well as adapting Transport Network Layer functionalities to the characteristics of a NoS in order to support key cellular services. Secondly, we address the issue of local location management, i.e., determining the approximate location of a mobile terminal in the NoS upon arrival of an incoming connection from the core network. This entails the design, implementation, and evaluation of efficient paging and Tracking Area Update mechanisms that can keep track of mobile terminals in the complex scenario of an all-wireless NoS whilst mitigating the impact on signalling traffic throughout the local NoS domain and towards the core network. Finally, we deal with the issue of traffic management in large-scale networks of small cells. On the one hand, we propose new 3GPP network procedures to support direct unicast communication between LTE terminals camped on the same NoS with minimal involvement from functional entities in the Evolved Packet Core. On the other hand, we define a set of extensions to the standard 3GPP Multicast/Broadcast Multimedia Service (MBMS) in order to improve the quality of experience of multicast/broadcast traffic services in high user-density scenarios.El crecimiento de la demanda de tasas de transmisión más altas está empujando a los operadores de redes móviles y a los fabricantes de equipos de red a la adopción de soluciones innovadoras en áreas que se extienden desde técnicas avanzadas de capa física (agregación de portadoras, esquemas MIMO masivos, etc.) hasta la red de acceso radio y troncal, entre otras. Desde 1957 la capacidad de las redes celulares se ha multiplicado por un millón. La utilización de mayor espectro radioeléctrico (incremento en factor 25), la división de dicho espectro en recursos más pequeños (factor 5) y la introducción de esquemas avanzados de modulación y codificación (factor 5) han desempeñado un papel menos significativo que las mejoras en la capacidad del sistema debidas a la reducción del tamaño de las celdas (factor 1600). Este hecho justifica el interés del mundo académico y de la industria en estaciones base de corto alcance y baja potencia, conocidas comúnmente como small cells. La transición de despliegues tradicionales de redes celulares basados en macroceldas hacia redes heterogéneas pone de manifiesto la necesidad de adoptar esquemas arquitecturales y de procedimientos capaces de proporcionar una integración transparente de despliegues masivos de small cells en la actual infraestructura de red celular. Este aspecto es particularmente complejo en el caso de despliegues a gran escala de redes inalámbricas de small cells (NoS, en sus siglas en inglés), donde la conectividad entre estaciones base se proporciona a través de una conexión troncal inalámbrica multi-salto. En general, las redes de small cells son una solución eficiente para mejorar la cobertura y la capacidad de la red celular en entornos de alta densidad de usuarios, como núcleos de transporte, sedes de eventos deportivos, palacios de congresos, áreas urbanas densas, centros comerciales, edificios corporativos, campus universitarios, parques temáticos, etc. El objetivo de esta Tesis de Doctorado es proporcionar una respuesta a la siguiente pregunta de investigación: ¿Cuál es el esquema arquitectural y de procedimientos de red necesario para soportar mecanismos eficientes de gestión de tráfico y movilidad en despliegues masivos de redes inalámbricas de small cells LTE? Para responder a esta pregunta nos centramos en tres desafíos clave en NoS. En primer lugar, presentamos una arquitectura de red 3GPP capaz de soportar despliegues a gran escala de redes inalámbricas de small cells en el Evolved Packet System, esto es, el sistema global de comunicaciones celulares LTE. Esto implica delegar funciones de red troncal en nuevas entidades funcionales desplegadas en la red de small cells, así como adaptar funcionalidades de la red de transporte a las características de una NoS para soportar servicios celulares clave. En segundo lugar, nos centramos en el problema de la gestión de movilidad local, es decir, determinar la localización aproximada de un terminal móvil en la NoS a la llegada de una solicitud de conexión desde la red troncal. Esto incluye el diseño, la implementación y la evaluación de mecanismos eficientes de paging y Tracking Area Update capaces de monitorizar terminales móviles en el complejo escenario de redes de small cells inalámbricas que, a la vez, mitiguen el impacto sobre el tráfico de señalización en el dominio local de la NoS y hacia la red troncal. Finalmente, estudiamos el problema de gestión de tráfico en despliegues a gran escala de redes inalámbricas de small cells. Por un lado, proponemos nuevos procedimientos de red 3GPP para soportar comunicaciones unicast directas entre terminales LTE registrados en la misma NoS con mínima intervención por parte de entidades funcionales en la red troncal. Por otro lado, definimos un conjunto de extensiones para mejorar la calidad de la experiencia del servicio estándar 3GPP de transmisión multicast/broadcast de tráfico multimedia (MBMS, en sus siglas en inglés) en entornos de alta densidad de usuarios

    ENERGY EFFICIENCY VIA HETEROGENEOUS NETWORK

    Get PDF
    The mobile telecommunication industry is growing at a phenomenal rate. On a daily basis, there are continuous inflow of mobile users and sophisticated devices into the mobile network. This has triggered a meteoric rise in mobile traffic; forcing network operators to embark on a series of projects to increase the capacity and coverage of mobile networks in line with growing traffic demands. A corollary to this development is the momentous rise in energy bills for mobile operators and the emission of a significant amount of CO2 into the atmosphere. This has become worrisome to the extent that regulatory bodies and environmentalist are calling for the adoption of more “green operation” to curtail these challenges. Green communication is an all-inclusive approach that champions the cause of overall network improvement, reduction in energy consumption and mitigation of carbon emission. The emergence of Heterogeneous network came as a means of fulfilling the vision of Green communication. Heterogeneous network is a blend of low power node overlaid on Macrocell to offload traffic from the Macrocell and enhance quality of service of cell edge users. Heterogeneous network seeks to boost the performance of LTE-Advanced beyond its present limit, and at the same time, reduce energy consumption in mobile wireless network. In this thesis, we explore the potential of heterogeneous network in enhancing the energy efficiency of mobile wireless network. Simulation process sees the use of a co-deployment of Macrocell and Picocell in cluster (Hot spot) and normal scenario. Finally, we compared the performance of each scenario using Cell Energy Efficiency and the Area Energy Efficiency as our performance metricfi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    Survey of Green Radio Communications Networks: Techniques and Recent Advances

    Get PDF
    Energy efficiency in cellular networks has received significant attention from both academia and industry because of the importance of reducing the operational expenditures and maintaining the profitability of cellular networks, in addition to making these networks "greener. " Because the base station is the primary energy consumer in the network, efforts have been made to study base station energy consumption and to find ways to improve energy efficiency. In this paper, we present a brief review of the techniques that have been used recently to improve energy efficiency, such as energy-efficient power amplifier techniques, time-domain techniques, cell switching, management of the physical layer through multiple-input multiple-output (MIMO) management, heterogeneous network architectures based on Micro-Pico-Femtocells, cell zooming, and relay techniques. In addition, this paper discusses the advantages and disadvantages of each technique to contribute to a better understanding of each of the techniques and thereby offer clear insights to researchers about how to choose the best ways to reduce energy consumption in future green radio networks
    corecore