193 research outputs found

    Specializing distributional vectors of allwords for lexical entailment

    Get PDF
    Semantic specialization methods fine-tune distributional word vectors using lexical knowledge from external resources (e.g., WordNet) to accentuate a particular relation between words. However, such post-processing methods suffer from limited coverage as they affect only vectors of words seen in the external resources. We present the first postprocessing method that specializes vectors of all vocabulary words – including those unseen in the resources – for the asymmetric relation of lexical entailment (LE) (i.e., hyponymyhypernymy relation). Leveraging a partially LE-specialized distributional space, our POSTLE (i.e., post-specialization for LE) model learns an explicit global specialization function, allowing for specialization of vectors of unseen words, as well as word vectors from other languages via cross-lingual transfer. We capture the function as a deep feedforward neural network: its objective re-scales vector norms to reflect the concept hierarchy while simultaneously attracting hyponymyhypernymy pairs to better reflect semantic similarity. An extended model variant augments the basic architecture with an adversarial discriminator. We demonstrate the usefulness and versatility of POSTLE models with different input distributional spaces in different scenarios (monolingual LE and zero-shot cross-lingual LE transfer) and tasks (binary and graded LE). We report consistent gains over state-of-the-art LE-specialization methods, and successfully LE-specialize word vectors for languages without any external lexical knowledge

    Identifying Semantic Divergences in Parallel Text without Annotations

    Full text link
    Recognizing that even correct translations are not always semantically equivalent, we automatically detect meaning divergences in parallel sentence pairs with a deep neural model of bilingual semantic similarity which can be trained for any parallel corpus without any manual annotation. We show that our semantic model detects divergences more accurately than models based on surface features derived from word alignments, and that these divergences matter for neural machine translation.Comment: Accepted as a full paper to NAACL 201

    SemEval-2017 Task 1: semantic textual similarity - multilingual and cross-lingual focused evaluation

    Get PDF
    Semantic Textual Similarity (STS) measures the meaning similarity of sentences. Applications include machine translation (MT), summarization, generation, question answering (QA), short answer grading, semantic search, dialog and conversational systems. The STS shared task is a venue for assessing the current state-of-the-art. The 2017 task focuses on multilingual and cross-lingual pairs with one sub-track exploring MT quality estimation (MTQE) data. The task obtained strong participation from 31 teams, with 17 participating in all language tracks. We summarize performance and review a selection of well performing methods. Analysis highlights common errors, providing insight into the limitations of existing models. To support ongoing work on semantic representations, the STS Benchmark is introduced as a new shared training and evaluation set carefully selected from the corpus of English STS shared task data (2012-2017)

    Identifying Semantic Divergences Across Languages

    Get PDF
    Cross-lingual resources such as parallel corpora and bilingual dictionaries are cornerstones of multilingual natural language processing (NLP). They have been used to study the nature of translation, train automatic machine translation systems, as well as to transfer models across languages for an array of NLP tasks. However, the majority of work in cross-lingual and multilingual NLP assumes that translations recorded in these resources are semantically equivalent. This is often not the case---words and sentences that are considered to be translations of each other frequently divergein meaning, often in systematic ways. In this thesis, we focus on such mismatches in meaning in text that we expect to be aligned across languages. We term such mismatches as cross-lingual semantic divergences. The core claim of this thesis is that translation is not always meaning preserving which leads to cross-lingual semantic divergences that affect multilingual NLP tasks. Detecting such divergences requires ways of directly characterizing differences in meaning across languages through novel cross-lingual tasks, as well as models that account for translation ambiguity and do not rely on expensive, task-specific supervision. We support this claim through three main contributions. First, we show that a large fraction of data in multilingual resources (such as parallel corpora and bilingual dictionaries) is identified as semantically divergent by human annotators. Second, we introduce cross-lingual tasks that characterize differences in word meaning across languages by identifying the semantic relation between two words. We also develop methods to predict such semantic relations, as well as a model to predict whether sentences in different languages have the same meaning. Finally, we demonstrate the impact of divergences by applying the methods developed in the previous sections to two downstream tasks. We first show that our model for identifying semantic relations between words helps in separating equivalent word translations from divergent translations in the context of bilingual dictionary induction, even when the two words are close in meaning. We also show that identifying and filtering semantic divergences in parallel data helps in training a neural machine translation system twice as fast without sacrificing quality

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen

    Specialising Word Vectors for Lexical Entailment

    Get PDF
    We present LEAR (Lexical Entailment Attract-Repel), a novel post-processing method that transforms any input word vector space to emphasise the asymmetric relation of lexical entailment (LE), also known as the IS-A or hyponymy-hypernymy relation. By injecting external linguistic constraints (e.g., WordNet links) into the initial vector space, the LE specialisation procedure brings true hyponymy-hypernymy pairs closer together in the transformed Euclidean space. The proposed asymmetric distance measure adjusts the norms of word vectors to reflect the actual WordNet-style hierarchy of concepts. Simultaneously, a joint objective enforces semantic similarity using the symmetric cosine distance, yielding a vector space specialised for both lexical relations at once. LEAR specialisation achieves state-of-the-art performance in the tasks of hypernymy directionality, hypernymy detection, and graded lexical entailment, demonstrating the effectiveness and robustness of the proposed asymmetric specialisation model
    corecore