20,341 research outputs found

    Multilingual Speech Recognition With A Single End-To-End Model

    Full text link
    Training a conventional automatic speech recognition (ASR) system to support multiple languages is challenging because the sub-word unit, lexicon and word inventories are typically language specific. In contrast, sequence-to-sequence models are well suited for multilingual ASR because they encapsulate an acoustic, pronunciation and language model jointly in a single network. In this work we present a single sequence-to-sequence ASR model trained on 9 different Indian languages, which have very little overlap in their scripts. Specifically, we take a union of language-specific grapheme sets and train a grapheme-based sequence-to-sequence model jointly on data from all languages. We find that this model, which is not explicitly given any information about language identity, improves recognition performance by 21% relative compared to analogous sequence-to-sequence models trained on each language individually. By modifying the model to accept a language identifier as an additional input feature, we further improve performance by an additional 7% relative and eliminate confusion between different languages.Comment: Accepted in ICASSP 201

    Multilingual End-to-End Speech Recognition with A Single Transformer on Low-Resource Languages

    Full text link
    Sequence-to-sequence attention-based models integrate an acoustic, pronunciation and language model into a single neural network, which make them very suitable for multilingual automatic speech recognition (ASR). In this paper, we are concerned with multilingual speech recognition on low-resource languages by a single Transformer, one of sequence-to-sequence attention-based models. Sub-words are employed as the multilingual modeling unit without using any pronunciation lexicon. First, we show that a single multilingual ASR Transformer performs well on low-resource languages despite of some language confusion. We then look at incorporating language information into the model by inserting the language symbol at the beginning or at the end of the original sub-words sequence under the condition of language information being known during training. Experiments on CALLHOME datasets demonstrate that the multilingual ASR Transformer with the language symbol at the end performs better and can obtain relatively 10.5\% average word error rate (WER) reduction compared to SHL-MLSTM with residual learning. We go on to show that, assuming the language information being known during training and testing, about relatively 12.4\% average WER reduction can be observed compared to SHL-MLSTM with residual learning through giving the language symbol as the sentence start token.Comment: arXiv admin note: text overlap with arXiv:1805.0623

    One-To-Many Multilingual End-to-end Speech Translation

    Full text link
    Nowadays, training end-to-end neural models for spoken language translation (SLT) still has to confront with extreme data scarcity conditions. The existing SLT parallel corpora are indeed orders of magnitude smaller than those available for the closely related tasks of automatic speech recognition (ASR) and machine translation (MT), which usually comprise tens of millions of instances. To cope with data paucity, in this paper we explore the effectiveness of transfer learning in end-to-end SLT by presenting a multilingual approach to the task. Multilingual solutions are widely studied in MT and usually rely on ``\textit{target forcing}'', in which multilingual parallel data are combined to train a single model by prepending to the input sequences a language token that specifies the target language. However, when tested in speech translation, our experiments show that MT-like \textit{target forcing}, used as is, is not effective in discriminating among the target languages. Thus, we propose a variant that uses target-language embeddings to shift the input representations in different portions of the space according to the language, so to better support the production of output in the desired target language. Our experiments on end-to-end SLT from English into six languages show important improvements when translating into similar languages, especially when these are supported by scarce data. Further improvements are obtained when using English ASR data as an additional language (up to +2.5+2.5 BLEU points).Comment: 8 pages, one figure, version accepted at ASRU 201

    Massively Multilingual Adversarial Speech Recognition

    Full text link
    We report on adaptation of multilingual end-to-end speech recognition models trained on as many as 100 languages. Our findings shed light on the relative importance of similarity between the target and pretraining languages along the dimensions of phonetics, phonology, language family, geographical location, and orthography. In this context, experiments demonstrate the effectiveness of two additional pretraining objectives in encouraging language-independent encoder representations: a context-independent phoneme objective paired with a language-adversarial classification objective.Comment: Accepted at NAACL-HLT 201

    Transfer learning of language-independent end-to-end ASR with language model fusion

    Full text link
    This work explores better adaptation methods to low-resource languages using an external language model (LM) under the framework of transfer learning. We first build a language-independent ASR system in a unified sequence-to-sequence (S2S) architecture with a shared vocabulary among all languages. During adaptation, we perform LM fusion transfer, where an external LM is integrated into the decoder network of the attention-based S2S model in the whole adaptation stage, to effectively incorporate linguistic context of the target language. We also investigate various seed models for transfer learning. Experimental evaluations using the IARPA BABEL data set show that LM fusion transfer improves performances on all target five languages compared with simple transfer learning when the external text data is available. Our final system drastically reduces the performance gap from the hybrid systems.Comment: Accepted at ICASSP201

    Generative Adversarial Training Data Adaptation for Very Low-resource Automatic Speech Recognition

    Full text link
    It is important to transcribe and archive speech data of endangered languages for preserving heritages of verbal culture and automatic speech recognition (ASR) is a powerful tool to facilitate this process. However, since endangered languages do not generally have large corpora with many speakers, the performance of ASR models trained on them are considerably poor in general. Nevertheless, we are often left with a lot of recordings of spontaneous speech data that have to be transcribed. In this work, for mitigating this speaker sparsity problem, we propose to convert the whole training speech data and make it sound like the test speaker in order to develop a highly accurate ASR system for this speaker. For this purpose, we utilize a CycleGAN-based non-parallel voice conversion technology to forge a labeled training data that is close to the test speaker's speech. We evaluated this speaker adaptation approach on two low-resource corpora, namely, Ainu and Mboshi. We obtained 35-60% relative improvement in phone error rate on the Ainu corpus, and 40% relative improvement was attained on the Mboshi corpus. This approach outperformed two conventional methods namely unsupervised adaptation and multilingual training with these two corpora.Comment: Accepted for Interspeech 202

    Analysis of Multilingual Sequence-to-Sequence speech recognition systems

    Full text link
    This paper investigates the applications of various multilingual approaches developed in conventional hidden Markov model (HMM) systems to sequence-to-sequence (seq2seq) automatic speech recognition (ASR). On a set composed of Babel data, we first show the effectiveness of multi-lingual training with stacked bottle-neck (SBN) features. Then we explore various architectures and training strategies of multi-lingual seq2seq models based on CTC-attention networks including combinations of output layer, CTC and/or attention component re-training. We also investigate the effectiveness of language-transfer learning in a very low resource scenario when the target language is not included in the original multi-lingual training data. Interestingly, we found multilingual features superior to multilingual models, and this finding suggests that we can efficiently combine the benefits of the HMM system with the seq2seq system through these multilingual feature techniques.Comment: arXiv admin note: text overlap with arXiv:1810.0345

    Multilingual Training and Cross-lingual Adaptation on CTC-based Acoustic Model

    Full text link
    Multilingual models for Automatic Speech Recognition (ASR) are attractive as they have been shown to benefit from more training data, and better lend themselves to adaptation to under-resourced languages. However, initialisation from monolingual context-dependent models leads to an explosion of context-dependent states. Connectionist Temporal Classification (CTC) is a potential solution to this as it performs well with monophone labels. We investigate multilingual CTC in the context of adaptation and regularisation techniques that have been shown to be beneficial in more conventional contexts. The multilingual model is trained to model a universal International Phonetic Alphabet (IPA)-based phone set using the CTC loss function. Learning Hidden Unit Contribution (LHUC) is investigated to perform language adaptive training. In addition, dropout during cross-lingual adaptation is also studied and tested in order to mitigate the overfitting problem. Experiments show that the performance of the universal phoneme-based CTC system can be improved by applying LHUC and it is extensible to new phonemes during cross-lingual adaptation. Updating all the parameters shows consistent improvement on limited data. Applying dropout during adaptation can further improve the system and achieve competitive performance with Deep Neural Network / Hidden Markov Model (DNN/HMM) systems on limited data

    Multilingual Language Processing From Bytes

    Full text link
    We describe an LSTM-based model which we call Byte-to-Span (BTS) that reads text as bytes and outputs span annotations of the form [start, length, label] where start positions, lengths, and labels are separate entries in our vocabulary. Because we operate directly on unicode bytes rather than language-specific words or characters, we can analyze text in many languages with a single model. Due to the small vocabulary size, these multilingual models are very compact, but produce results similar to or better than the state-of- the-art in Part-of-Speech tagging and Named Entity Recognition that use only the provided training datasets (no external data sources). Our models are learning "from scratch" in that they do not rely on any elements of the standard pipeline in Natural Language Processing (including tokenization), and thus can run in standalone fashion on raw text

    Structure-Level Knowledge Distillation For Multilingual Sequence Labeling

    Full text link
    Multilingual sequence labeling is a task of predicting label sequences using a single unified model for multiple languages. Compared with relying on multiple monolingual models, using a multilingual model has the benefit of a smaller model size, easier in online serving, and generalizability to low-resource languages. However, current multilingual models still underperform individual monolingual models significantly due to model capacity limitations. In this paper, we propose to reduce the gap between monolingual models and the unified multilingual model by distilling the structural knowledge of several monolingual models (teachers) to the unified multilingual model (student). We propose two novel KD methods based on structure-level information: (1) approximately minimizes the distance between the student's and the teachers' structure level probability distributions, (2) aggregates the structure-level knowledge to local distributions and minimizes the distance between two local probability distributions. Our experiments on 4 multilingual tasks with 25 datasets show that our approaches outperform several strong baselines and have stronger zero-shot generalizability than both the baseline model and teacher models.Comment: Accepted to ACL 2020, camera-ready. 14 page
    corecore