764 research outputs found

    Adapting End-to-End Speech Recognition for Readable Subtitles

    Full text link
    Automatic speech recognition (ASR) systems are primarily evaluated on transcription accuracy. However, in some use cases such as subtitling, verbatim transcription would reduce output readability given limited screen size and reading time. Therefore, this work focuses on ASR with output compression, a task challenging for supervised approaches due to the scarcity of training data. We first investigate a cascaded system, where an unsupervised compression model is used to post-edit the transcribed speech. We then compare several methods of end-to-end speech recognition under output length constraints. The experiments show that with limited data far less than needed for training a model from scratch, we can adapt a Transformer-based ASR model to incorporate both transcription and compression capabilities. Furthermore, the best performance in terms of WER and ROUGE scores is achieved by explicitly modeling the length constraints within the end-to-end ASR system.Comment: IWSLT 202

    NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish

    Full text link
    [EN] Most of the models proposed in the literature for abstractive summarization are generally suitable for the English language but not for other languages. Multilingual models were introduced to address that language constraint, but despite their applicability being broader than that of the monolingual models, their performance is typically lower, especially for minority languages like Catalan. In this paper, we present a monolingual model for abstractive summarization of textual content in the Catalan language. The model is a Transformer encoder-decoder which is pretrained and fine-tuned specifically for the Catalan language using a corpus of newspaper articles. In the pretraining phase, we introduced several self-supervised tasks to specialize the model on the summarization task and to increase the abstractivity of the generated summaries. To study the performance of our proposal in languages with higher resources than Catalan, we replicate the model and the experimentation for the Spanish language. The usual evaluation metrics, not only the most used ROUGE measure but also other more semantic ones such as BertScore, do not allow to correctly evaluate the abstractivity of the generated summaries. In this work, we also present a new metric, called content reordering, to evaluate one of the most common characteristics of abstractive summaries, the rearrangement of the original content. We carried out an exhaustive experimentation to compare the performance of the monolingual models proposed in this work with two of the most widely used multilingual models in text summarization, mBART and mT5. The experimentation results support the quality of our monolingual models, especially considering that the multilingual models were pretrained with many more resources than those used in our models. Likewise, it is shown that the pretraining tasks helped to increase the degree of abstractivity of the generated summaries. To our knowledge, this is the first work that explores a monolingual approach for abstractive summarization both in Catalan and Spanish.This work was partially supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades and FEDER founds under the project AMIC (TIN2017-85854-C4-2-R), and by the Agencia Valenciana de la Innovacio (AVI) of the Generalitat Valenciana under the GUAITA (INNVA1/2020/61) project.Ahuir-Esteve, V.; Hurtado Oliver, LF.; González-Barba, JÁ.; Segarra Soriano, E. (2021). NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish. Applied Sciences. 11(21):1-16. https://doi.org/10.3390/app11219872S116112

    Abstract Meaning Representation for Multi-Document Summarization

    Full text link
    Generating an abstract from a collection of documents is a desirable capability for many real-world applications. However, abstractive approaches to multi-document summarization have not been thoroughly investigated. This paper studies the feasibility of using Abstract Meaning Representation (AMR), a semantic representation of natural language grounded in linguistic theory, as a form of content representation. Our approach condenses source documents to a set of summary graphs following the AMR formalism. The summary graphs are then transformed to a set of summary sentences in a surface realization step. The framework is fully data-driven and flexible. Each component can be optimized independently using small-scale, in-domain training data. We perform experiments on benchmark summarization datasets and report promising results. We also describe opportunities and challenges for advancing this line of research.Comment: 13 page

    Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning

    Get PDF
    Developing artificial learning systems that can understand and generate natural language has been one of the long-standing goals of artificial intelligence. Recent decades have witnessed an impressive progress on both of these problems, giving rise to a new family of approaches. Especially, the advances in deep learning over the past couple of years have led to neural approaches to natural language generation (NLG). These methods combine generative language learning techniques with neural-networks based frameworks. With a wide range of applications in natural language processing, neural NLG (NNLG) is a new and fast growing field of research. In this state-of-the-art report, we investigate the recent developments and applications of NNLG in its full extent from a multidimensional view, covering critical perspectives such as multimodality, multilinguality, controllability and learning strategies. We summarize the fundamental building blocks of NNLG approaches from these aspects and provide detailed reviews of commonly used preprocessing steps and basic neural architectures. This report also focuses on the seminal applications of these NNLG models such as machine translation, description generation, automatic speech recognition, abstractive summarization, text simplification, question answering and generation, and dialogue generation. Finally, we conclude with a thorough discussion of the described frameworks by pointing out some open research directions.This work has been partially supported by the European Commission ICT COST Action “Multi-task, Multilingual, Multi-modal Language Generation” (CA18231). AE was supported by BAGEP 2021 Award of the Science Academy. EE was supported in part by TUBA GEBIP 2018 Award. BP is in in part funded by Independent Research Fund Denmark (DFF) grant 9063-00077B. IC has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 838188. EL is partly funded by Generalitat Valenciana and the Spanish Government throught projects PROMETEU/2018/089 and RTI2018-094649-B-I00, respectively. SMI is partly funded by UNIRI project uniri-drustv-18-20. GB is partly supported by the Ministry of Innovation and the National Research, Development and Innovation Office within the framework of the Hungarian Artificial Intelligence National Laboratory Programme. COT is partially funded by the Romanian Ministry of European Investments and Projects through the Competitiveness Operational Program (POC) project “HOLOTRAIN” (grant no. 29/221 ap2/07.04.2020, SMIS code: 129077) and by the German Academic Exchange Service (DAAD) through the project “AWAKEN: content-Aware and netWork-Aware faKE News mitigation” (grant no. 91809005). ESA is partially funded by the German Academic Exchange Service (DAAD) through the project “Deep-Learning Anomaly Detection for Human and Automated Users Behavior” (grant no. 91809358)

    XL-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages

    Full text link
    Contemporary works on abstractive text summarization have focused primarily on high-resource languages like English, mostly due to the limited availability of datasets for low/mid-resource ones. In this work, we present XL-Sum, a comprehensive and diverse dataset comprising 1 million professionally annotated article-summary pairs from BBC, extracted using a set of carefully designed heuristics. The dataset covers 44 languages ranging from low to high-resource, for many of which no public dataset is currently available. XL-Sum is highly abstractive, concise, and of high quality, as indicated by human and intrinsic evaluation. We fine-tune mT5, a state-of-the-art pretrained multilingual model, with XL-Sum and experiment on multilingual and low-resource summarization tasks. XL-Sum induces competitive results compared to the ones obtained using similar monolingual datasets: we show higher than 11 ROUGE-2 scores on 10 languages we benchmark on, with some of them exceeding 15, as obtained by multilingual training. Additionally, training on low-resource languages individually also provides competitive performance. To the best of our knowledge, XL-Sum is the largest abstractive summarization dataset in terms of the number of samples collected from a single source and the number of languages covered. We are releasing our dataset and models to encourage future research on multilingual abstractive summarization. The resources can be found at \url{https://github.com/csebuetnlp/xl-sum}.Comment: Findings of the Association for Computational Linguistics, ACL 2021 (camera-ready

    Multi-language transfer learning for low-resource legal case summarization

    Get PDF
    Analyzing and evaluating legal case reports are labor-intensive tasks for judges and lawyers, who usually base their decisions on report abstracts, legal principles, and commonsense reasoning. Thus, summarizing legal documents is time-consuming and requires excellent human expertise. Moreover, public legal corpora of specific languages are almost unavailable. This paper proposes a transfer learning approach with extractive and abstractive techniques to cope with the lack of labeled legal summarization datasets, namely a low-resource scenario. In particular, we conducted extensive multi- and cross-language experiments. The proposed work outperforms the state-of-the-art results of extractive summarization on the Australian Legal Case Reports dataset and sets a new baseline for abstractive summarization. Finally, syntactic and semantic metrics assessments have been carried out to evaluate the accuracy and the factual consistency of the machine-generated legal summaries
    corecore