1,066 research outputs found

    Multilinear motion synthesis with level-of-detail controls

    Get PDF
    Interactive animation systems often use a level-of-detail(LOD) control to reduce the computational cost by eliminatingunperceivable details of the scene. Most methodsemploy a multiresolutional representation of animationand geometrical data, and adaptively change the accuracylevel according to the importance of each character.Multilinear analysis provides the efficient representation ofmultidimensional and multimodal data, including humanmotion data, based on statistical data correlations. Thispaper proposes a LOD control method of motion synthesiswith a multilinear model. Our method first extracts asmall number of principal components of motion samplesby analyzing three-mode correlations among joints, time,and samples using high-order singular value decomposition.A new motion is synthesized by interpolatingthe reduced components using geostatistics, where theprediction accuracy of the resulting motion is controlledby adaptively decreasing the data dimensionality. Weintroduce a hybrid algorithm to optimize the reductionsize and computational time according to the distancefrom the camera while maintaining visual quality. Ourmethod provides a practical tool for creating an interactiveanimation of many characters while ensuring accurate andflexible controls at a modest level of computational cost

    Multilinear Motion Synthesis Using Geostatistics

    Get PDF
    The trend in interactive entertainment is towards scenes with massive numbers of characters, and requiring huge amounts of motion data, which must be compactly and efficiently stored without sacrificing quality or controllability of the motions. Multilinear algebra is a powerful tool for efficiently representing multivariate data, includinghuman motion data, through the analysis of multimodal correlations. The multilinear model, however, often suffers from undesirable artifacts when motion data are sparsely and non-uniformly sampled in a high-dimensional control space. For overcoming this defect, we introduce a geostatistical interpolation to the multilinear model by formulating it to fit into the motion representation with tensor approximation. The advantages of this approach are demonstrated by the motion synthesis in a high-dimensional control space and by a level of detail control. This technique provides practical tools for implementing interactive animations of many characters while ensuringaccurate and flexible controls with a small amount of storage

    {3D} Morphable Face Models -- Past, Present and Future

    No full text
    In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications

    Tensor Approximation for Multidimensional and Multivariate Data

    Full text link
    Tensor decomposition methods and multilinear algebra are powerful tools to cope with challenges around multidimensional and multivariate data in computer graphics, image processing and data visualization, in particular with respect to compact representation and processing of increasingly large-scale data sets. Initially proposed as an extension of the concept of matrix rank for 3 and more dimensions, tensor decomposition methods have found applications in a remarkably wide range of disciplines. We briefly review the main concepts of tensor decompositions and their application to multidimensional visual data. Furthermore, we will include a first outlook on porting these techniques to multivariate data such as vector and tensor fields

    Alternatives for jet engine control

    Get PDF
    The development of models of tensor type for a digital simulation of the quiet, clean safe engine (QCSE) gas turbine engine; the extension, to nonlinear multivariate control system design, of the concepts of total synthesis which trace their roots back to certain early investigations under this grant; the role of series descriptions as they relate to questions of scheduling in the control of gas turbine engines; the development of computer-aided design software for tensor modeling calculations; further enhancement of the softwares for linear total synthesis, mentioned above; and calculation of the first known examples using tensors for nonlinear feedback control are discussed

    NASA LaRC Workshop on Guidance, Navigation, Controls, and Dynamics for Atmospheric Flight, 1993

    Get PDF
    This publication is a collection of materials presented at a NASA workshop on guidance, navigation, controls, and dynamics (GNC&D) for atmospheric flight. The workshop was held at the NASA Langley Research Center on March 18-19, 1993. The workshop presentations describe the status of current research in the GNC&D area at Langley over a broad spectrum of research branches. The workshop was organized in eight sessions: overviews, general, controls, military aircraft, dynamics, guidance, systems, and a panel discussion. A highlight of the workshop was the panel discussion which addressed the following issue: 'Direction of guidance, navigation, and controls research to ensure U.S. competitiveness and leadership in aerospace technologies.

    Perception Based Gait Generation for Quadrupedal Characters

    Get PDF
    With the rapid expansion of the range of digital characters involved in film and game production, creating a wide variety of expressive characters has become a problem that cannot be solved efficiently through current animation methods. Key-frame animation is time-consuming and requires animation expertise. Motion capture is constrained by equipment and environment requirements and is most applicable to humanoid characters. Simulation can produce physically correct motion but does not account for expressiveness. This thesis focuses on developing a more efficient animation system using a procedural approach in which the skeletal structure and characteristics of motion that communicate weight and age in quadrupeds have been isolated and engineered as user-controlled tools and modifiers to build creature shape and synthesize cyclic gait animation. This new approach accomplished the goal of quick generation of expressive characters. It is also successful in achieving real-time animation playback and adjustment

    Text-based Editing of Talking-head Video

    No full text
    Editing talking-head video to change the speech content or to remove filler words is challenging. We propose a novel method to edit talking-head video based on its transcript to produce a realistic output video in which the dialogue of the speaker has been modified, while maintaining a seamless audio-visual flow (i.e. no jump cuts). Our method automatically annotates an input talking-head video with phonemes, visemes, 3D face pose and geometry, reflectance, expression and scene illumination per frame. To edit a video, the user has to only edit the transcript, and an optimization strategy then chooses segments of the input corpus as base material. The annotated parameters corresponding to the selected segments are seamlessly stitched together and used to produce an intermediate video representation in which the lower half of the face is rendered with a parametric face model. Finally, a recurrent video generation network transforms this representation to a photorealistic video that matches the edited transcript. We demonstrate a large variety of edits, such as the addition, removal, and alteration of words, as well as convincing language translation and full sentence synthesis

    Geometric Expression Invariant 3D Face Recognition using Statistical Discriminant Models

    No full text
    Currently there is no complete face recognition system that is invariant to all facial expressions. Although humans find it easy to identify and recognise faces regardless of changes in illumination, pose and expression, producing a computer system with a similar capability has proved to be particularly di cult. Three dimensional face models are geometric in nature and therefore have the advantage of being invariant to head pose and lighting. However they are still susceptible to facial expressions. This can be seen in the decrease in the recognition results using principal component analysis when expressions are added to a data set. In order to achieve expression-invariant face recognition systems, we have employed a tensor algebra framework to represent 3D face data with facial expressions in a parsimonious space. Face variation factors are organised in particular subject and facial expression modes. We manipulate this using single value decomposition on sub-tensors representing one variation mode. This framework possesses the ability to deal with the shortcomings of PCA in less constrained environments and still preserves the integrity of the 3D data. The results show improved recognition rates for faces and facial expressions, even recognising high intensity expressions that are not in the training datasets. We have determined, experimentally, a set of anatomical landmarks that best describe facial expression e ectively. We found that the best placement of landmarks to distinguish di erent facial expressions are in areas around the prominent features, such as the cheeks and eyebrows. Recognition results using landmark-based face recognition could be improved with better placement. We looked into the possibility of achieving expression-invariant face recognition by reconstructing and manipulating realistic facial expressions. We proposed a tensor-based statistical discriminant analysis method to reconstruct facial expressions and in particular to neutralise facial expressions. The results of the synthesised facial expressions are visually more realistic than facial expressions generated using conventional active shape modelling (ASM). We then used reconstructed neutral faces in the sub-tensor framework for recognition purposes. The recognition results showed slight improvement. Besides biometric recognition, this novel tensor-based synthesis approach could be used in computer games and real-time animation applications
    corecore