170 research outputs found

    Codes for QPSK modulation with invariance under 90 degrees rotation

    Get PDF
    The new rate 1/2 nonlinear convolutional codes for quadrature phase shift keying (QPSK) modulation allow the achievement of full 90 degree rotational invariance of coded QPSK signal sequences at no significant loss in real coding gains when compared to linear codes. For mobile communication systems operating in a fading environment with frequent periods of low signal-to-noise ratio and the possibility of losses of carrier phase synchronization in the receiver, the invariance to 90 degree ambiguous demodulation should be a significant advantage

    Flexible digital modulation and coding synthesis for satellite communications

    Get PDF
    An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts

    Feasibility study of non-invasive telemetry techniques for use with submarine telephone cables

    Get PDF
    The feasibility of using inductive coupling with existing submarine telephone cables for telemetry of data from ocean sensors was investigated. The submarine telephone cable was simulated with a computer model and the model results were tested experimentally by deploying 600 meters of coax cable in Woods Hole Harbor. In parallel a study of the optimum access methods and modulation and techniques was performed. Results of the feasibility study showed that a non-invasive technique for inductive coupling is not feasible for use with existing SF and SD coaxial cable designs. Signals induced in both conductors by a toroid encircling the cable remain identical as they propagate along the cable as a result of mutual inductance. Thus, no signals are apparent at the repeaters. Optimal use of cable bandwidth combines time division multiple access with trellis-coded QAM modulation.Funding was provided by the IRIS Consortium under sub-award agreement No. 0169 and by the W.M. Keck Foundation through their Technology Innovation Awards

    KNN-Based ML Model for the Symbol Prediction in TCM Trellis Coded Modulation TCM Decoder

    Get PDF
    Machine Learning is a booming technology today. In a machine learning set of training, data is to be provided to the model for training and that model predicts the output. Machine Learning models are trained using a computer program known as ML algorithms.The new machine learning-based Transition Metric Unit (TMU) of 4D- 8PSK Trellis coded Modulation TCM Decoder is presented in this work. The classic Viterbi decoder's branch metric unit, or TMU, takes on a complex structure. Trellis coded Modulation (TCM) is a combination of 8 PSK modulations and Error Correcting Code (ECC). TMU is one of the complex units of the TCM decoder, which is essentially a Viterbi decoder. Similar to how the first Branch metric is determined in the straightforward Viterbi decoder, the TCM decoder performs this BM computation via the TMU unit. The TMU becomes challenging and uses more dynamic power as a result of the enormous constraint length and the vast number of encoder states.In the proposed algorithm innovative KNN (K nearest neighbours) based ML model is developed. It is a supervised learning model in which input and output both are provided to the model, training data also called the labels, when a new set of data will come the model will give output based on its previous set experience and data.Here we are using this ML model for the symbol prediction at the receiver end of the TCM decoder based on the previous learning. Using the proposed innovation, the paper perceives the optimization of the TCM Decoder which will further reduce the H/W requirements and low latency which results in less power consumption

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    Hybrid Iterative Multiuser Detection for Channel Coded Space Division Multiple Access OFDM Systems

    No full text
    Space division multiple access (SDMA) aided orthogonal frequency division multiplexing (OFDM) systems assisted by efficient multiuser detection (MUD) techniques have recently attracted intensive research interests. The maximum likelihood detection (MLD) arrangement was found to attain the best performance, although this was achieved at the cost of a computational complexity, which increases exponentially both with the number of users and with the number of bits per symbol transmitted by higher order modulation schemes. By contrast, the minimum mean-square error (MMSE) SDMA-MUD exhibits a lower complexity at the cost of a performance loss. Forward error correction (FEC) schemes such as, for example, turbo trellis coded modulation (TTCM), may be efficiently combined with SDMA-OFDM systems for the sake of improving the achievable performance. Genetic algorithm (GA) based multiuser detection techniques have been shown to provide a good performance in MUD-aided code division multiple access (CDMA) systems. In this contribution, a GA-aided MMSE MUD is proposed for employment in a TTCM assisted SDMA-OFDM system, which is capable of achieving a similar performance to that attained by its optimum MLD-aided counterpart at a significantly lower complexity, especially at high user loads. Moreover, when the proposed biased Q-function based mutation (BQM) assisted iterative GA (IGA) MUD is employed, the GA-aided system’s performance can be further improved, for example, by reducing the bit error ratio (BER) measured at 3 dB by about five orders of magnitude in comparison to the TTCM assisted MMSE-SDMA-OFDM benchmarker system, while still maintaining modest complexity
    corecore