3,037 research outputs found

    A cyber-physical approach to combined HW-SW monitoring for improving energy efficiency in data centers

    Get PDF
    High-Performance Computing, Cloud computing and next-generation applications such e-Health or Smart Cities have dramatically increased the computational demand of Data Centers. The huge energy consumption, increasing levels of CO2 and the economic costs of these facilities represent a challenge for industry and researchers alike. Recent research trends propose the usage of holistic optimization techniques to jointly minimize Data Center computational and cooling costs from a multilevel perspective. This paper presents an analysis on the parameters needed to integrate the Data Center in a holistic optimization framework and leverages the usage of Cyber-Physical systems to gather workload, server and environmental data via software techniques and by deploying a non-intrusive Wireless Sensor Net- work (WSN). This solution tackles data sampling, retrieval and storage from a reconfigurable perspective, reducing the amount of data generated for optimization by a 68% without information loss, doubling the lifetime of the WSN nodes and allowing runtime energy minimization techniques in a real scenario

    Mobility-aware hierarchical fog computing framework for Industrial Internet of Things (IIoT)

    Get PDF
    The Industrial Internet of Things (IIoTs) is an emerging area that forms the collaborative environment for devices to share resources. In IIoT, many sensors, actuators, and other devices are used to improve industrial efficiency. As most of the devices are mobile; therefore, the impact of mobility can be seen in terms of low-device utilization. Thus, most of the time, the available resources are underutilized. Therefore, the inception of the fog computing model in IIoT has reduced the communication delay in executing complex tasks. However, it is not feasible to cover the entire region through fog nodes; therefore, fog node selection and placement is still the challenging task. This paper proposes a multi-level hierarchical fog node deployment model for the industrial environment. Moreover, the scheme utilized the IoT devices as a fog node; however, the selection depends on energy, path/location, network properties, storage, and available computing resources. Therefore, the scheme used the location-aware module before engaging the device for task computation. The framework is evaluated in terms of memory, CPU, scalability, and system efficiency; also compared with the existing approach in terms of task acceptance rate. The scheme is compared with xFogSim framework that is capable to handle workload upto 1000 devices. However, the task acceptance ratio is higher in the proposed framework due to its multi-tier model. The workload acceptance ratio is 85% reported with 3000 devices; whereas, in xFogsim the ratio is reduced to approx. 68%. The primary reason for high workload acceptation is that the proposed solution utilizes the unused resources of the user devices for computations

    Bin packing algorithms for virtual machine placement in cloud computing: a review

    Get PDF
    Cloud computing has become more commercial and familiar. The Cloud data centers havhuge challenges to maintain QoS and keep the Cloud performance high. The placing of virtual machines among physical machines in Cloud is significant in optimizing Cloud performance. Bin packing based algorithms are most used concept to achieve virtual machine placement(VMP). This paper presents a rigorous survey and comparisons of the bin packing based VMP methods for the Cloud computing environment. Various methods are discussed and the VM placement factors in each methods are analyzed to understand the advantages and drawbacks of each method. The scope of future research and studies are also highlighted
    corecore