1,779 research outputs found

    FFTPL: An Analytic Placement Algorithm Using Fast Fourier Transform for Density Equalization

    Full text link
    We propose a flat nonlinear placement algorithm FFTPL using fast Fourier transform for density equalization. The placement instance is modeled as an electrostatic system with the analogy of density cost to the potential energy. A well-defined Poisson's equation is proposed for gradient and cost computation. Our placer outperforms state-of-the-art placers with better solution quality and efficiency

    Bulk Scheduling with the DIANA Scheduler

    Full text link
    Results from the research and development of a Data Intensive and Network Aware (DIANA) scheduling engine, to be used primarily for data intensive sciences such as physics analysis, are described. In Grid analyses, tasks can involve thousands of computing, data handling, and network resources. The central problem in the scheduling of these resources is the coordinated management of computation and data at multiple locations and not just data replication or movement. However, this can prove to be a rather costly operation and efficient sing can be a challenge if compute and data resources are mapped without considering network costs. We have implemented an adaptive algorithm within the so-called DIANA Scheduler which takes into account data location and size, network performance and computation capability in order to enable efficient global scheduling. DIANA is a performance-aware and economy-guided Meta Scheduler. It iteratively allocates each job to the site that is most likely to produce the best performance as well as optimizing the global queue for any remaining jobs. Therefore it is equally suitable whether a single job is being submitted or bulk scheduling is being performed. Results indicate that considerable performance improvements can be gained by adopting the DIANA scheduling approach.Comment: 12 pages, 11 figures. To be published in the IEEE Transactions in Nuclear Science, IEEE Press. 200

    Handling the complexity of routing problem in modern VLSI design

    Get PDF
    In VLSI physical design, the routing task consists of using over-the-cell metal wires to connect pins and ports of circuit gates and blocks. Traditionally, VLSI routing is an important design step in the sense that the quality of routing solution has great impact on various design metrics such as circuit timing, power consumption, chip reliability and manufacturability etc. As the advancing VLSI design enters the nanometer era, the routing success (routability issue) has been arising as one of the most critical problems in back-end design. In one aspect, the degree of design complexity is increasing dramatically as more and more modules are integrated into the chip. Much higher chip density leads to higher routing demands and potentially more risks in routing failure. In another aspect, with decreasing design feature size, there are more complex design rules imposed to ensure manufacturability. These design rules are hard to satisfy and they usually create more barriers for achieving routing closure (i.e., generate DRC free routing solution) and thus affect chip time to market (TTM) plan. In general, the behavior and performance of routing are affected by three consecutive phases: placement phase, global routing phase and detailed routing phase in a typical VLSI physical design flow. Traditional CAD tools handle each of the three phases independently and the global picture of the routability issue is neglected. Different from conventional approaches which propose tools and algorithms for one particular design phase, this thesis investigates the routability issue from all three phases and proposes a series of systematic solutions to build a more generic flow and improve quality of results (QoR). For the placement phase, we will introduce a mixed-sized placement refinement tool for alleviating congestion after placement. The tool shifts and relocates modules based on a global routing estimation. For the global routing phase, a very fast and effective global router is developed. Its performance surpasses many peer works as verified by ISPD 2008 global routing contest results. In the detailed routing phase, a tool is proposed to perform detailed routing using regular routing patterns based on a correct-by-construction methodology to improve routability as well as satisfy most design rules. Finally, the tool which integrates global routing and detailed routing is developed to remedy the inconsistency between global routing and detailed routing. To verify the algorithms we proposed, three sets of testcases derived from ISPD98 and ISPD05/06 placement benchmark suites are proposed. The results indicate that our proposed methods construct an integrated and systematic flow for routability improvement which is better than conventional methods
    corecore