789 research outputs found

    PeF: Poisson's Equation Based Large-Scale Fixed-Outline Floorplanning

    Full text link
    Floorplanning is the first stage of VLSI physical design. An effective floorplanning engine definitely has positive impact on chip design speed, quality and performance. In this paper, we present a novel mathematical model to characterize non-overlapping of modules, and propose a flat fixed-outline floorplanning algorithm based on the VLSI global placement approach using Poisson's equation. The algorithm consists of global floorplanning and legalization phases. In global floorplanning, we redefine the potential energy of each module based on the novel mathematical model for characterizing non-overlapping of modules and an analytical solution of Poisson's equation. In this scheme, the widths of soft modules appear as variables in the energy function and can be optimized. Moreover, we design a fast approximate computation scheme for partial derivatives of the potential energy. In legalization, based on the defined horizontal and vertical constraint graphs, we eliminate overlaps between modules remained after global floorplanning, by modifying relative positions of modules. Experiments on the MCNC, GSRC, HB+ and ami49\_x benchmarks show that, our algorithm improves the average wirelength by at least 2\% and 5\% on small and large scale benchmarks with certain whitespace, respectively, compared to state-of-the-art floorplanners

    3D IC optimal layout design. A parallel and distributed topological approach

    Full text link
    The task of 3D ICs layout design involves the assembly of millions of components taking into account many different requirements and constraints such as topological, wiring or manufacturability ones. It is a NP-hard problem that requires new non-deterministic and heuristic algorithms. Considering the time complexity, the commonly applied Fiduccia-Mattheyses partitioning algorithm is superior to any other local search method. Nevertheless, it can often miss to reach a quasi-optimal solution in 3D spaces. The presented approach uses an original 3D layout graph partitioning heuristics implemented with use of the extremal optimization method. The goal is to minimize the total wire-length in the chip. In order to improve the time complexity a parallel and distributed Java implementation is applied. Inside one Java Virtual Machine separate optimization algorithms are executed by independent threads. The work may also be shared among different machines by means of The Java Remote Method Invocation system.Comment: 26 pages, 9 figure

    FPGA adders: performance evaluation and optimal design

    Get PDF
    Delay models and cost analyses developed for ASIC technology are not useful in designing and implementing FPGA devices. The authors discuss costs and operational delays of fixed-point adders on Xilinx 4000 series devices and propose timing models and optimization schemes for carry-skip and carry-select adders.published_or_final_versio
    corecore