259 research outputs found

    Simulation and experimental verification of W-band finite frequency selective surfaces on infinite background with 3D full wave solver NSPWMLFMA

    Get PDF
    We present the design, processing and testing of a W-band finite by infinite and a finite by finite Grounded Frequency Selective Surfaces (FSSs) on infinite background. The 3D full wave solver Nondirective Stable Plane Wave Multilevel Fast Multipole Algorithm (NSPWMLFMA) is used to simulate the FSSs. As NSPWMLFMA solver improves the complexity matrix-vector product in an iterative solver from O(N(2)) to O(N log N) which enables the solver to simulate finite arrays with faster execution time and manageable memory requirements. The simulation results were verified by comparing them with the experimental results. The comparisons demonstrate the accuracy of the NSPWMLFMA solver. We fabricated the corresponding FSS arrays on quartz substrate with photolithographic etching techniques and characterized the vector S-parameters with a free space Millimeter Wave Vector Network Analyzer (MVNA)

    Overview of Large-Scale Computing: The Past, the Present, and the Future

    Get PDF
    published_or_final_versio

    Application of the multi-level time-harmonic fast multipole BEM to 3-D visco-elastodynamics

    Get PDF
    Engineering Analysis with Boundary elements (accepted, to appear)International audienceThis article extends previous work by the authors on the single- and multi-domain time-harmonic elastodynamic multi-level fast multipole BEM formulations to the case of weakly dissipative viscoelastic media. The underlying boundary integral equation and fast multipole formulations are formally identical to that of elastodynamics, except that the wavenumbers are complex-valued due to attenuation. Attention is focused on evaluating the multipole decomposition of the viscoelastodynamic fundamental solution. A damping-dependent modification of the selection rule for the multipole truncation parameter, required by the presence of complex wavenumbers, is proposed. It is empirically adjusted so as to maintain a constant accuracy over the damping range of interest in the approximation of the fundamental solution, and validated on numerical tests focusing on the evaluation of the latter. The proposed modification is then assessed on 3D single-region and multi-region visco-elastodynamic examples for which exact solutions are known. Finally, the multi-region formulation is applied to the problem of a wave propagating in a semi-infinite medium with a lossy semi-spherical inclusion (seismic wave in alluvial basin). These examples involve problem sizes of up to about 3 1053\,10^{5} boundary unknowns

    Combined Field Integral Equation Based Theory of Characteristic Mode

    Get PDF
    Conventional electric field integral equation based theory is susceptible to the spurious internal resonance problem when the characteristic modes of closed perfectly conducting objects are computed iteratively. In this paper, we present a combined field integral equation based theory to remove the difficulty of internal resonances in characteristic mode analysis. The electric and magnetic field integral operators are shown to share a common set of non-trivial characteristic pairs (values and modes), leading to a generalized eigenvalue problem which is immune to the internal resonance corruption. Numerical results are presented to validate the proposed formulation. This work may offer efficient solutions to characteristic mode analysis which involves electrically large closed surfaces

    A Coupled Hybridizable Discontinuous Galerkin and Boundary Integral Method for Analyzing Electromagnetic Scattering

    Full text link
    A coupled hybridizable discontinuous Galerkin (HDG) and boundary integral (BI) method is proposed to efficiently analyze electromagnetic scattering from inhomogeneous/composite objects. The coupling between the HDG and the BI equations is realized using the numerical flux operating on the equivalent current and the global unknown of the HDG. This approach yields sparse coupling matrices upon discretization. Inclusion of the BI equation ensures that the only error in enforcing the radiation conditions is the discretization. However, the discretization of this equation yields a dense matrix, which prohibits the use of a direct matrix solver on the overall coupled system as often done with traditional HDG schemes. To overcome this bottleneck, a "hybrid" method is developed. This method uses an iterative scheme to solve the overall coupled system but within the matrix-vector multiplication subroutine of the iterations, the inverse of the HDG matrix is efficiently accounted for using a sparse direct matrix solver. The same subroutine also uses the multilevel fast multipole algorithm to accelerate the multiplication of the guess vector with the dense BI matrix. The numerical results demonstrate the accuracy, the efficiency, and the applicability of the proposed HDG-BI solver

    Boundary integral equation methods for the elastic and thermoelastic waves in three dimensions

    Get PDF
    In this paper, we consider the boundary integral equation (BIE) method for solving the exterior Neumann boundary value problems of elastic and thermoelastic waves in three dimensions based on the Fredholm integral equations of the first kind. The innovative contribution of this work lies in the proposal of the new regularized formulations for the hyper-singular boundary integral operators (BIO) associated with the time-harmonic elastic and thermoelastic wave equations. With the help of the new regularized formulations, we only need to compute the integrals with weak singularities at most in the corresponding variational forms of the boundary integral equations. The accuracy of the regularized formulations is demonstrated through numerical examples using the Galerkin boundary element method (BEM).Comment: 24 pages, 6 figure
    • …
    corecore