7,490 research outputs found

    Space-Time Signal Design for Multilevel Polar Coding in Slow Fading Broadcast Channels

    Full text link
    Slow fading broadcast channels can model a wide range of applications in wireless networks. Due to delay requirements and the unavailability of the channel state information at the transmitter (CSIT), these channels for many applications are non-ergodic. The appropriate measure for designing signals in non-ergodic channels is the outage probability. In this paper, we provide a method to optimize STBCs based on the outage probability at moderate SNRs. Multilevel polar coded-modulation is a new class of coded-modulation techniques that benefits from low complexity decoders and simple rate matching. In this paper, we derive the outage optimality condition for multistage decoding and propose a rule for determining component code rates. We also derive an upper bound on the outage probability of STBCs for designing the set-partitioning-based labelling. Finally, due to the optimality of the outage-minimized STBCs for long codes, we introduce a novel method for the joint optimization of short-to-moderate length polar codes and STBCs

    Throughput-based Design for Polar Coded-Modulation

    Full text link
    Typically, forward error correction (FEC) codes are designed based on the minimization of the error rate for a given code rate. However, for applications that incorporate hybrid automatic repeat request (HARQ) protocol and adaptive modulation and coding, the throughput is a more important performance metric than the error rate. Polar codes, a new class of FEC codes with simple rate matching, can be optimized efficiently for maximization of the throughput. In this paper, we aim to design HARQ schemes using multilevel polar coded-modulation (MLPCM). Thus, we first develop a method to determine a set-partitioning based bit-to-symbol mapping for high order QAM constellations. We simplify the LLR estimation of set-partitioned QAM constellations for a multistage decoder, and we introduce a set of algorithms to design throughput-maximizing MLPCM for the successive cancellation decoding (SCD). These codes are specifically useful for non-combining (NC) and Chase-combining (CC) HARQ protocols. Furthermore, since optimized codes for SCD are not optimal for SC list decoders (SCLD), we propose a rate matching algorithm to find the best rate for SCLD while using the polar codes optimized for SCD. The resulting codes provide throughput close to the capacity with low decoding complexity when used with NC or CC HARQ

    Multilevel Coded Modulation for Unequal Error Protection and Multistage Decoding—Part II: Asymmetric Constellations

    Get PDF
    In this paper, multilevel coded asymmetric modulation with multistage decoding and unequal error protection (UEP) is discussed. These results further emphasize the fact that unconventional signal set partitionings are more promising than traditional (Ungerboeck-type) partitionings, to achieve UEP capabilities with multilevel coding and multistage decoding. Three types of unconventional partitionings are analyzed for asymmetric 8-PSK and 16-QAM constellations over the additive white Gaussian noise channel to introduce design guidelines. Generalizations to other PSK and QAM type constellations follow the same lines. Upper bounds on the bit-error probability based on union bound arguments are first derived. In some cases, these bounds become loose due to the large overlappings of decision regions associated with asymmetric constellations and unconventional partitionings. To overcome this problem, simpler and tighter approximated bounds are derived. Based on these bounds, it is shown that additional refinements can be achieved in the construction of multilevel UEP codes, by introducing asymmetries in PSK and QAM signal constellations

    Multilevel Coded Modulation for Unequal Error Protection and Multistage Decoding—Part I: Symmetric Constellations

    Get PDF
    In this paper, theoretical upper bounds and computer simulation results on the error performance of multilevel block coded modulations for unequal error protection (UEP) and multistage decoding are presented. It is shown that nonstandard signal set partitionings and multistage decoding provide excellent UEP capabilities beyond those achievable with conventional coded modulation. The coding scheme is designed in such a way that the most important information bits have a lower error rate than other information bits. The large effective error coefficients, normally associated with standard mapping by set partitioning, are reduced by considering nonstandard partitionings of the underlying signal set. The bits-to-signal mappings induced by these partitionings allow the use of soft-decision decoding of binary block codes. Moreover, parallel operation of some of the staged decoders is possible, to achieve high data rate transmission, so that there is no error propagation between these decoders. Hybrid partitionings are also considered that trade off increased intraset distances in the last partition levels with larger effective error coefficients in the middle partition levels. The error performance of specific examples of multilevel codes over 8-PSK and 64-QAM signal sets are simulated and compared with theoretical upper bounds on the error performance

    Concatenated Multilevel Coded Modulation Schemes for Digital Satellite Broadcasting

    Get PDF
    The error performance of bandwith-efficient concatenated multilevel coded modulation (MCM) schemes for digital satellite broadcasting is analyzed. Nonstandard partitioning, multistage decoding, and outer Reed-Solomon (RS) codes are employed to provided unequal error protection capabilities

    Equivalent-Capacity-Based Design of Space-Time Block-Coded Sphere-Packing-Aided Multilevel Coding

    No full text
    A multilevel coding (MLC) scheme invoking sphere packing (SP) modulation combined with space time block coding (STBC) is designed. The coding rates of each of the MLC component codes are determined using the so-called equivalent capacity based constituent-code rate-calculation procedure invoking a 4-dimensional (4D) sphere packing bit-to-symbol mapping scheme. Four different-rate Low-Density Parity Check (LDPC) constituent-codes are used by the MLC scheme. The performance of the resultant equivalent capacity based design is characterized using simulation results. Our results demonstrate an approximately 3.5dB gain over an identical scheme dispensing with SP modulation. Furthermore although a similar performance gain is attained by both the proposed MLC scheme and its benchmarker, which uses a single-class LDPC code, the MLC scheme is preferred, since it benefits from the new classic philosophy of using low-memory, low-complexity component codes as well as providing an unequal error protection capability

    Generalized Low-Density Parity-Check Coding Aided Multilevel Codes

    No full text
    Classic Low-Density Parity-Check (LDPC) codes have recently been used as component codes in Multilevel Coding (MLC) due to their impressive BER performance as well as owing to their flexible coding rates. In this paper, we proposed a Multilevel Coding invoking Generalized Low-Density Parity-Check (GLDPC) component codes, which is capable of outperforming the classic LDPC component codes at a reduced decoding latency, when communicating over AWGN and uncorrelated Rayleigh fading channels

    Three-Dimensional EXIT Chart Analysis of Iterative Detection Aided Coded Modulation Schemes

    No full text
    The iterative convergence of iteratively detected coded modulation schemes having different block lengths, decoding complexity and an unequal error protection capability is studied, when communicating over AWGNchannels using 8PSK modulation. More specifically, the coded modulation schemes investigated include Multilevel Coding (MLC), Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM), Bit-Interleaved Coded Modulation (BICM) as well as Bit-Interleaved Coded Modulation employing Iterative Decoding (BICM-ID). A novel three dimensional EXIT chart was introduced for studying the iterative convergence behaviour of the Multistage Decoding (MSD) scheme used in MLC
    corecore