7 research outputs found

    Interpreting protein variant effects with computational predictors and deep mutational scanning

    Get PDF
    Computational predictors of genetic variant effect have advanced rapidly in recent years. These programs provide clinical and research laboratories with a rapid and scalable method to assess the likely impacts of novel variants. However, it can be difficult to know to what extent we can trust their results. To benchmark their performance, predictors are often tested against large datasets of known pathogenic and benign variants. These benchmarking data may overlap with the data used to train some supervised predictors, which leads to data re-use or circularity, resulting in inflated performance estimates for those predictors. Furthermore, new predictors are usually found by their authors to be superior to all previous predictors, which suggests some degree of computational bias in their benchmarking. Large-scale functional assays known as deep mutational scans provide one possible solution to this problem, providing independent datasets of variant effect measurements. In this Review, we discuss some of the key advances in predictor methodology, current benchmarking strategies and how data derived from deep mutational scans can be used to overcome the issue of data circularity. We also discuss the ability of such functional assays to directly predict clinical impacts of mutations and how this might affect the future need for variant effect predictors

    Functional characterization of single amino acid variants

    Get PDF
    Single amino acid variants (SAVs) are one of the main causes of Mendelian disorders, and play an important role in the development of many complex diseases. At the same time, they are the most common kind of variation affecting coding DNA, without generally presenting any damaging effect. With the advent of next generation sequencing technologies, the detection of these variants in patients and the general population is easier than ever, but the characterization of the functional effects of each variant remains an open challenge. It is our objective in this work to tackle this problem by developing machine learning based in silico SAVs pathology predictors. Having the PMut classic predictor as a starting point, we have rethought the entire supervised learning pipeline, elaborating new training sets, features and classifiers. PMut2017 is the first result of these efforts, a new general-purpose predictor based on SwissVar and trained on 12 different conservation scores. Its performance, evaluated bothby cross-validation and different blind tests, was in line with the best predictors published to date. Continuing our efforts in search for more accurate predictors, especially for those cases were general predictors tend to fail, we developed PMut-S, a suite of 215 protein-specific predictors. Similar to PMut in nature, Pmut-S introduced the use of co-evolution conservation features and balanced training sets, and showed improved performance, specially for those proteins that were more commonly misclassified by PMut. Comparing PMut-S to other specific predictors we proved that it is possible to train specific predictors using a unique automated pipeline and match the results of most gene specific predictors released to date. The implementation of the machine learning pipeline of both PMut and PMut-S was released as an open source Python module: PyMut, which bundles functions implementing the features computation and selection, classifier training and evaluation, plots drawing, among others. Their predictions were also made available in a rich web portal, which includes a precomputed repository with analyses of more than 700 million variants on over 100,000 human proteins, together with relevant contextual information such as 3D visualizationsof protein structures, links to databases, functional annotations, and more.Les mutacions puntuals d’aminoàcids són la principal causa de moltes malalties mendelianes, i juguen un paper important en el desenvolupament de moltes malalties complexes. Alhora, són el tipus de variant més comuna que afecta l’ADN codificant de proteïnes, sense provocar, en general, cap efecte advers. Amb l’adveniment de la seqüenciació de nova generació, la detecció d’aquestes variants en pacients i en la població general és més fàcil que mai, però la caracterització dels efectes funcionals de cada variant segueix sent un repte. El nostre objectiu en aquest treball és abordar aquest problema desenvolupant predictors de patologia in silico basats en l’aprenentatge automàtic. Prenent el predictor clàssic PMut com a punt de partida, hem repensat tot el procés d’aprenentatge supervisat, elaborant nous conjunts d’entrenament, descriptors i classificadors. PMut2017 és el primer resultat d’aquests esforços, un nou predictor basat en SwissVar i entrenat amb 12 mètriques de conservació de seqüència. La seva precisió, mesurada mitjançant validació creuada i amb tests cecs, s’ha mostrar en línia amb els millors predictors publicats a dia d’avui. Continuant els nostres esforços en la cerca de predictors més acurats, hem desenvolupat PMut-S, un conjunt de 215 predictors específics per cada proteïna. Similar a PMut en la seva concepció, PMut-S introdueix l’ús de descriptors basats en la coevolució i conjunts d’entrenament balancejats, millorant el rendiment de PMut2017 en 0.1 punts del coeficient de correlació de Matthews. Comparant PMut-S a d’altres predictors específics hem provat que és possible entrenar predictors específics seguint un únic procediment automatitzat i assolir uns resultats tan bon com els de la majoria de predictors específics publicats. La implementació del procediment d’aprenentatge automàtic tant de PMut com de PMut-S ha sigut publicat com a un mòdul de Python de codi obert: PyMut, el qual inclou les funcions que implementen el càlcul dels descriptors i la seva selecció, l’entrenament i avaluació dels classificadors, el dibuix de diverses gràfiques... Les prediccions també estan disponibles en un portal web que inclou un repositori precalculat amb els anàlisis de més de 700 milions de variants en més de 100 mil proteïnes humanes, junt a rellevant informació de context com visualitzacions 3D de les proteïnes, enllaços a bases de dades, anotacions funcionals i molt més

    Multilevel biological characterization of exomic variants at the protein level significantly improves the identification of their deleterious effects

    No full text
    Motivation: There are now many predictors capable of identifying the likely phenotypic effects of single nucleotide variants (SNVs) or short in-frame Insertions or Deletions (INDELs) on the increasing amount of genome sequence data. Most of these predictors focus on SNVs and use a combination of features related to sequence conservation, biophysical, and/or structural properties to link the observed variant to either neutral or disease phenotype. Despite notable successes, the mapping between genetic variants and their phenotypic effects is riddled with levels of complexity that are not yet fully understood and that are often not taken into account in the predictions, despite their promise of significantly improving the prediction of deleterious mutants. Results: We present DEOGEN, a novel variant effect predictor that can handle both missense SNVs and in-frame INDELs. By integrating information from different biological scales and mimicking the complex mixture of effects that lead from the variant to the phenotype, we obtain significant improvements in the variant-effect prediction results. Next to the typical variant-oriented features based on the evolutionary conservation of the mutated positions, we added a collection of protein-oriented features that are based on functional aspects of the gene affected. We cross-validated DEOGEN on 36 825 polymorphisms, 20 821 deleterious SNVs, and 1038 INDELs from SwissProt. The multilevel contextualization of each (variant, protein) pair in DEOGEN provides a 10% improvement of MCC with respect to current state-of-the-art tools.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore