106 research outputs found

    Image multi-level-thresholding with Mayfly optimization

    Get PDF
    Image thresholding is a well approved pre-processing methodology and enhancing the image information based on a chosen threshold is always preferred. This research implements the mayfly optimization algorithm (MOA) based image multi-level-thresholding on a class of benchmark images of dimension 512x512x1. The MOA is a novel methodology with the algorithm phases, such as; i) Initialization, ii) Exploration with male-mayfly (MM), iii) Exploration with female-mayfly (FM), iv) Offspring generation and, v) Termination. This algorithm implements a strict two-step search procedure, in which every Mayfly is forced to attain the global best solution. The proposed research considers the threshold value from 2 to 5 and the superiority of the result is confirmed by computing the essential Image quality measures (IQM). The performance of MOA is also compared and validated against the other procedures, such as particle-swarm-optimization (PSO), bacterial foraging optimization(BFO), firefly-algorithm(FA), bat algorithm (BA), cuckoo search(CS) and moth-flame optimization (MFO) and the attained p-value of Wilcoxon rank test confirmed the superiority of the MOA compared with other algorithms considered in this wor

    HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images

    Get PDF
    Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 ā€” sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics

    Contrast Enhancement Using Bacteria Foraging Optimization

    Get PDF
    Image enhancement is one of the leading field in which researches are continuously exploring new algorithms and concepts to enhance dull and low intensity images by various methods. Contrast enhancement techniques are used for improving visual quality of low contrast images. Bacteria foraging optimization(BFO) method is one such technique used for contrast enhancement. As histogram equalization(HE) preserves the original brightness, but it fails to bring out details specially in dark regions and produces artifacts and noise due to overstretching of histogram. Thus this paper processes a variant of histogram equalization i.e bacteria foraging optimization technique, which gives more efficient results

    Multilevel Thresholding of Brain Tumor MRI Images: Patch-Levy Bees Algorithm versus Harmony Search Algorithm

    Get PDF
    Image segmentation of brain magnetic resonance imaging (MRI) plays a crucial role among radiologists in terms of diagnosing brain disease. Parts of the brain such as white matter, gray matter and cerebrospinal fluids (CFS), have to be clearly determined by the radiologist during the process of brain abnormalities detection. Manual segmentation is grueling and may be prone to error, which can in turn affect the result of the diagnosis. Nature-inspired metaheuristic algorithms such as Harmony Search (HS), which was successfully applied in multilevel thresholding for brain tumor segmentation instead of the Patch-Levy Bees algorithm (PLBA). Even though the PLBA is one powerful multilevel thresholding, it has not been applied to brain tumor segmentation. This paper focuses on a comparative study of the PLBA and HS for brain tumor segmentation. The test dataset consisting of nine images was collected from the Tuanku Muhriz UKM Hospital (HCTM). As for the result, it shows that the PLBA has significantly outperformed HS. The performance of both algorithms is evaluated in terms of solution quality and stability

    A Survey: Spider Monkey Optimization Algorithm

    Get PDF
    Swarm intelligence is a one of the areas for evaluating the optimization states. Many algorithms have been developed by simulating the swarming behaviour of various creatures like ants, honey bees, fishes, birds and their results are found as very motivating for solving optimization problems. In this paper, a new approach for optimization is proposed by modelling the social behaviour of spider monkeys. Spider monkeys have been categorized as fission-fusion social structure based animals. The animals which follow fission-fusion social systems, initially work in a large group and based on need after some time, they divide themselves in smaller groups led by an adult female for foraging. There- fore, the proposed strategy broadly classified as inspiration from the intelligent foraging behaviour of fission-fusion social structure based animals

    Grey Scale Image Multi-Thresholding Using Moth-Flame Algorithm and Tsallis Entropy

    Get PDF
    In the current era, image evaluations play a foremost role in a variety of domains, where the processing of digital images is essential to identify vital information. The image multi-thresholding is a vital image pre-processing field in which the available digital image is enhanced by grouping similar pixel values. Normally, the digital test images are available in RGB/greyscale format and the appropriate processing methodology is essential to treat the images with a chosen methodology. In the proposed approach, Tsallis Entropy (TE) supported multi-level thresholding is planned for the benchmark greyscale imagery of dimension 512x512x1 pixels using a chosen threshold values (T=2,3,4,5). This work suggests the possible Cost Value (CV) that can be considered during the optimization search and the proposed work is executed by considering the maximization of the TE as the CV. The entire thresholding task is executed using Moth-Flame Algorithm (MFA) and the accomplished results are validated based on the image quality measures of various thresholds. The attained result with MFO is better compared to the result of CS, BFO, PSO, and GA

    The Application of Improved Bacteria Foraging Algorithm to the Optimization of Aviation Equipment Maintenance Scheduling

    Get PDF
    Taking the aviation equipment scheduled maintenance as a prototype, this paper improves a bionic global random search algorithm - bacteria foraging optimization algorithm to solve the task-scheduling problem. Inspired by gene mutation, the activity of bacteria is dynamically adjusted to make good bacteria more capable of action. In addition, a bacterial quorum sensing mechanism is established, which allows bacteria to guide their swimming routes by using their peer experience and enhance their global search capability. Its application to the engineering practice can optimize the scheduling of the maintenance process. It is of great application value in increasing the aviation equipment maintenance efficiency and the level of command automation. In addition, it can improve the resource utilization ratio to reduce the maintenance support cost

    NEW BACTERIA FORAGING AND PARTICLE SWARM HYBRID ALGORITHM FOR MEDICAL IMAGE COMPRESSION

    Get PDF
    For perfect diagnosis of brain tumour, it is necessary to identify tumour affected regions in the brain in MRI (Magnetic Resonance Imaging) images effectively and compression of these images for transmission over a communication channel at high speed with better visual quality to the experts. An attempt has been made in this paper for identifying tumour regions with optimal thresholds which are optimized with the proposed Hybrid Bacteria Foraging Optimization Algorithm (BFOA) and Particle Swarm Optimization (PSO) named (HBFOA-PSO) by maximizing the Renyiā€™s entropy and Kapurā€™s entropy. BFOA may be trapped into local optimal problem and delay in execution time (convergence time) because of random chemo taxis steps in the procedure of algorithm and to get global solution, a theory of swarming is commenced in the structure of HBFOA-PSO. Effectiveness of this HBFOA-PSO is evaluated on six different MRI images of brain with tumours and proved to be better in Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE) and Fitness Function
    • ā€¦
    corecore