1,178 research outputs found

    Marginalization for rare event simulation in switching diffusions

    Full text link
    In this paper we use splitting technique to estimate the probability of hitting a rare but critical set by the continuous component of a switching diffusion. Instead of following classical approach we use Wonham filter to achieve multiple goals including reduction of asymptotic variance and exemption from sampling the discrete components

    Simulating Tail Probabilities in GI/GI.1 Queues and Insurance Risk Processes with Subexponentail Distributions

    Get PDF
    This paper deals with estimating small tail probabilities of thesteady-state waiting time in a GI/GI/1 queue with heavy-tailed (subexponential) service times. The problem of estimating infinite horizon ruin probabilities in insurance risk processes with heavy-tailed claims can be transformed into the same framework. It is well-known that naive simulation is ineffective for estimating small probabilities and special fast simulation techniques like importance sampling, multilevel splitting, etc., have to be used. Though there exists a vast amount of literature on the rare event simulation of queuing systems and networks with light-tailed distributions, previous fast simulation techniques for queues with subexponential service times have been confined to the M/GI/1 queue. The general approach is to use the Pollaczek-Khintchine transformation to convert the problem into that of estimating the tail distribution of a geometric sum of independent subexponential random variables. However, no such useful transformation exists when one goes from Poisson arrivals to general interarrival-time distributions. We describe and evaluate an approach that is based on directly simulating the random walk associated with the waiting-time process of the GI/GI/1 queue, using a change of measure called delayed subexponential twisting -an importance sampling idea recently developed and found useful in the context of M/GI/1 heavy-tailed simulations

    A comparison of RESTART implementations

    Get PDF
    The RESTART method is a widely applicable simulation technique for the estimation of rare event probabilities. The method is based on the idea to restart the simulation in certain system states, in order to generate more occurrences of the rare event. One of the main questions for any RESTART implementation is how and when to restart the simulation, in order to achieve the most accurate results for a fixed simulation effort. We investigate and compare, both theoretically and empirically, different implementations of the RESTART method. We find that the original RESTART implementation, in which each path is split into a fixed number of copies, may not be the most efficient one. It is generally better to fix the total simulation effort for each stage of the simulation. Furthermore, given this effort, the best strategy is to restart an equal number of times from each state, rather than to restart each time from a randomly chosen stat
    • …
    corecore