1,113 research outputs found

    Template-Cut: A Pattern-Based Segmentation Paradigm

    Get PDF
    We present a scale-invariant, template-based segmentation paradigm that sets up a graph and performs a graph cut to separate an object from the background. Typically graph-based schemes distribute the nodes of the graph uniformly and equidistantly on the image, and use a regularizer to bias the cut towards a particular shape. The strategy of uniform and equidistant nodes does not allow the cut to prefer more complex structures, especially when areas of the object are indistinguishable from the background. We propose a solution by introducing the concept of a "template shape" of the target object in which the nodes are sampled non-uniformly and non-equidistantly on the image. We evaluate it on 2D-images where the object's textures and backgrounds are similar, and large areas of the object have the same gray level appearance as the background. We also evaluate it in 3D on 60 brain tumor datasets for neurosurgical planning purposes.Comment: 8 pages, 6 figures, 3 tables, 6 equations, 51 reference

    Segmentation of cell structures in fluorescence confocal microscopy images

    Get PDF
    During the past several years, image segmentation techniques have been developed and extensively used in biomedical applications as an important tool to extract objects and boundaries of interest. In biological field, cytoskeleton analysis is a complicated problem and the analysing technique is still immature. Cytoskeleton plays an important role in normal cell activities, including motion and division, which make the cell cytoskeleton important to investigate. The objective of this project is to investigate and evaluate level set segmentation methods for segmentation of both cell nuclei and membrane segmentation of microfilament images captured by fluorescent confocal microscopy. Based on some background investigations, the active contour methodology has been selected as the fundamental method for image segmentation. This thesis presents the methods used and reports on the results achieved for cell and nuclei segmentation using the hybrid level-set method and cell membrane segmentation using the subjective surfaces model. In addition, some initial results of nuclei segmentation in 3-D case based on the hybrid method will be presented as well. Also included in this thesis are the method and the initial categorisation of microtubule images based on the multi-template method. At the end of the thesis, possible directions for potential future work are presented. It is envisaged that the segmentation tools produced by the project will make cell cytoskeleton data analysis much more convenient. In particular, the segmentation of cell membranes will help biologists to perform quantitative analysis of fluorescent confocal microscopy images by measuring the cell properties. With more useful information of cytoskeleton being provided, the work contained in this thesis has the potential to contribute to evaluation and prediction of the possibility of cell canceration

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation
    • …
    corecore