1,193 research outputs found

    A Multilevel File System for High Assurance

    Get PDF
    The designs of applications for multilevel systems cannot merely duplicate those of the untrusted world. When applications are built on a high assurance base they will be constrained by the underlying policy enforcement mechanism_ Consideration must be given to the creation and management of multilevel data structures by untrusted subjects_ Applications should be designed to rely upon the TCB s security policy enforcement services rather than build new access control services beyond the TCB perimeter The results of an analysis of the design of a general purpose le system developed to execute as an untrusted application on a high assurance TCB are presented. The design illustrates a number of solutions to problems resulting from a high assurance environment.Approved for public release; distribution is unlimited

    Multilevel security and concurrency control for distributed computer systems

    Get PDF
    Multilevel security deals with the problem of controlling the flow of classified information. We present multilevel information flow control mechanisms for distributed systems that allow concurrent accesses to shared data. In a distributed computing environment, the different sites communicate through message passing. Our security mechanisms check the security of information flows caused by computations within individual sites as well as ones caused by communications among the sites. The correct behavior of the security mechanisms cannot be guaranteed if the allowed concurrency is left uncontrolled in the system. We present concurrency control mechanisms for the security mechanisms. In the presence of such concurrency control mechanisms, the consistency of the security data, which the security mechanisms rely upon, is preserved. Finally, we also present schemes to increase the efficiency and the precision of the security mechanisms

    History-sensitive versus future-sensitive approaches to security in distributed systems

    Full text link
    We consider the use of aspect-oriented techniques as a flexible way to deal with security policies in distributed systems. Recent work suggests to use aspects for analysing the future behaviour of programs and to make access control decisions based on this; this gives the flavour of dealing with information flow rather than mere access control. We show in this paper that it is beneficial to augment this approach with history-based components as is the traditional approach in reference monitor-based approaches to mandatory access control. Our developments are performed in an aspect-oriented coordination language aiming to describe the Bell-LaPadula policy as elegantly as possible. Furthermore, the resulting language has the capability of combining both history- and future-sensitive policies, providing even more flexibility and power.Comment: In Proceedings ICE 2010, arXiv:1010.530

    Research on fully distributed data processing systems

    Get PDF
    Issued as Quarterly progress reports, nos. 1-11, and Project report, Project no. G-36-64

    Towards an Enhanced Protocol for Improving Transactional Support in Interoperable Service Oriented Application-Based (SOA-Based) Systems

    Get PDF
    When using a shared database for distributed transactions, it is often difficult to connect business processes and softwarecomponents running on disparate platforms into a single transaction. For instance, one platform may add or update data, and thenanother platform later access the changed or added data. This severely limits transactional capabilities across platforms. Thissituation becomes more acute when concurrent transactions with interleaving operations spans across different applications andresources. Addressing this problem in an open, dynamic and distributed environment of web services poses special challenges,and still remains an open issue. Following the broad adoption and use of the standard Web Services Transaction Protocols,requirements have grown for the addition of extended protocols to handle problems that exist within the context of interoperableservice-oriented applications. Most extensions to the current standard WS-Transaction Protocols still lack proper mechanisms forerror-handling, concurrency control, transaction recovery, consolidation of multiple transaction calls into a single call, and securereporting and tracing for suspicious activities. In this research, we will first extend the current standard WS-TransactionFramework, and then propose an enhanced protocol (that can be deployed within the extended framework) to improvetransactional and security support for asynchronous applications in a distributed environment. A hybrid methodology whichincorporates service-oriented engineering and rapid application development will be used to develop a procurement system(which represents an interoperable service-oriented application) that integrates our proposed protocol. We will empiricallyevaluate and compare the performance of the enhanced protocol with other conventional distributed protocols (such as 2PL) interms of QoS parameters (throughput, response time, and resource utilization), availability of the application, databaseconsistency, and effect of locking on latency, among other factors.Keywords: Database, interoperability, security, concurrent transaction, web services, protocol, service-oriente

    An approach to building a secure and persistent distributed object management system

    Full text link
    The Common Object Request Broker Architecture (CORBA) proposed by the Object Management Group (OMG) is a widely accepted standard to provide a system level framework in design and implementation of distributed objects. The core of the Object Management Architecture (OMA) is an Object Request Broker (ORB), which provides transparency of object location, activation, and communications. However, the specification provided by the OMG is not sufficient. For instance, there are no security specifications when handling object requests through the ORBs. The lack of such a security service prevents the use of CORBA from handling sensitive data such as personal and corporate financial information; In view of the above, this thesis identifies, explores, and provides an approach to handling secure objects in a distributed environment along with a persistent object service using the CORBA specification. The research specifically involves the design and implementation of a secured distributed object service. This object service requires a persistent service and object storage for storing and retrieving security specific information. To provide a secure distributed object environment, a secure object service using the specifications provided by the OMG has been designed and implemented. In addition, to preserve the persistence of secure information, an object service has been implemented to provide a persistent data store; The secure object service can provide a framework for handling distributed object in applications requiring security clearance such as distributed banking, online stock tradings, internet shopping, geographic and medical information systems
    • …
    corecore