405 research outputs found

    Multilevel Monte Carlo finite element methods for stochastic elliptic variational inequalities

    Get PDF
    Multilevel Monte Carlo finite element methods (MLMC-FEMs) for the solution of stochastic elliptic variational inequalities are introduced, analyzed, and numerically investigated. Under suitable assumptions on the random diffusion coefficient, the random forcing function, and the deterministic obstacle, we prove existence and uniqueness of solutions of “pathwise” weak formulations. Suitable regularity results for deterministic, elliptic obstacle problems lead to uniform pathwise error bounds, providing optimal-order error estimates of the statistical error and upper bounds for the corresponding computational cost for the classical MC method and novel MLMC-FEMs. Utilizing suitable multigrid solvers for the occurring sample problems, in two space dimensions MLMC-FEMs then provide numerical approximations of the expectation of the random solution with the same order of efficiency as for a corresponding deterministic problem, up to logarithmic terms. Our theoretical findings are illustrated by numerical experiments

    Adaptive Multilevel Monte Carlo Methods for Stochastic Variational Inequalities

    Get PDF
    While multilevel Monte Carlo (MLMC) methods for the numerical approximation of partial differential equations with random coefficients enjoy great popularity, combinations with spatial adaptivity seem to be rare. We present an adaptive MLMC finite element approach based on deterministic adaptive mesh refinement for the arising “pathwise” problems and outline a convergence theory in terms of desired accuracy and required computational cost. Our theoretical and heuristic reasoning together with the efficiency of our new approach are confirmed by numerical experiments

    Multilevel Sparse Grid Methods for Elliptic Partial Differential Equations with Random Coefficients

    Full text link
    Stochastic sampling methods are arguably the most direct and least intrusive means of incorporating parametric uncertainty into numerical simulations of partial differential equations with random inputs. However, to achieve an overall error that is within a desired tolerance, a large number of sample simulations may be required (to control the sampling error), each of which may need to be run at high levels of spatial fidelity (to control the spatial error). Multilevel sampling methods aim to achieve the same accuracy as traditional sampling methods, but at a reduced computational cost, through the use of a hierarchy of spatial discretization models. Multilevel algorithms coordinate the number of samples needed at each discretization level by minimizing the computational cost, subject to a given error tolerance. They can be applied to a variety of sampling schemes, exploit nesting when available, can be implemented in parallel and can be used to inform adaptive spatial refinement strategies. We extend the multilevel sampling algorithm to sparse grid stochastic collocation methods, discuss its numerical implementation and demonstrate its efficiency both theoretically and by means of numerical examples

    Multilevel Quasi-Monte Carlo Methods for Lognormal Diffusion Problems

    Get PDF
    In this paper we present a rigorous cost and error analysis of a multilevel estimator based on randomly shifted Quasi-Monte Carlo (QMC) lattice rules for lognormal diffusion problems. These problems are motivated by uncertainty quantification problems in subsurface flow. We extend the convergence analysis in [Graham et al., Numer. Math. 2014] to multilevel Quasi-Monte Carlo finite element discretizations and give a constructive proof of the dimension-independent convergence of the QMC rules. More precisely, we provide suitable parameters for the construction of such rules that yield the required variance reduction for the multilevel scheme to achieve an ε\varepsilon-error with a cost of O(εθ)\mathcal{O}(\varepsilon^{-\theta}) with θ<2\theta < 2, and in practice even θ1\theta \approx 1, for sufficiently fast decaying covariance kernels of the underlying Gaussian random field inputs. This confirms that the computational gains due to the application of multilevel sampling methods and the gains due to the application of QMC methods, both demonstrated in earlier works for the same model problem, are complementary. A series of numerical experiments confirms these gains. The results show that in practice the multilevel QMC method consistently outperforms both the multilevel MC method and the single-level variants even for non-smooth problems.Comment: 32 page

    Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: Regularity and error analysis

    Full text link
    Random eigenvalue problems are useful models for quantifying the uncertainty in several applications from the physical sciences and engineering, e.g., structural vibration analysis, the criticality of a nuclear reactor or photonic crystal structures. In this paper we present a simple multilevel quasi-Monte Carlo (MLQMC) method for approximating the expectation of the minimal eigenvalue of an elliptic eigenvalue problem with coefficients that are given as a series expansion of countably-many stochastic parameters. The MLQMC algorithm is based on a hierarchy of discretisations of the spatial domain and truncations of the dimension of the stochastic parameter domain. To approximate the expectations, randomly shifted lattice rules are employed. This paper is primarily dedicated to giving a rigorous analysis of the error of this algorithm. A key step in the error analysis requires bounds on the mixed derivatives of the eigenfunction with respect to both the stochastic and spatial variables simultaneously. An accompanying paper [Gilbert and Scheichl, 2021], focusses on practical extensions of the MLQMC algorithm to improve efficiency, and presents numerical results
    corecore