11,638 research outputs found

    Multilevel Monte Carlo Approximation of Functions

    Get PDF
    Many applications across sciences and technologies require a careful quantification of nondeterministic effects to a system output, for example, when evaluating the system’s reliability or when gearing it towards more robust operation conditions. At the heart of these considerations lies an accurate characterization of uncertain system outputs. In this work we introduce and analyze novel multilevel Monte Carlo techniques for an efficient characterization of an uncertain system output’s distribution. These techniques rely on accurately approximating general parametric expectations, i.e., expectations that depend on a parameter, uniformly on an interval. Applications of interest include, for example, the approximation of the characteristic function and of the cumulative distribution function of an uncertain system output. A further important consequence of the introduced approximation techniques for parametric expectations (i.e., for functions) is that they allow us to construct multilevel Monte Carlo estimators for various robustness indicators, such as for a quantile (also known as value-at-risk) and for the conditional value-at-risk. These robustness indicators cannot be expressed as moments and are thus not usually easily accessible. In fact, here we provide a framework that allows us to simultaneously estimate a cumulative distribution function, a quantile, and the associated conditional value-at-risk of an uncertain system output at the cost of a single multilevel Monte Carlo simulation, while each estimated quantity satisfies a prescribed tolerance goal

    MATHICSE Technical Report : Multilevel Monte Carlo approximation of functions

    Get PDF
    Many applications across sciences and technologies require a careful quantification of non-deterministic effects to a system output, for example when evaluating the system's reliability or when gearing it towards more robust operation conditions. At the heart of these considerations lies an accurate characterization of uncertain system outputs. In this work we introduce and analyze novel multilevel Monte Carlo techniques for an efficient characterization of an uncertain system output's distribution. These techniques rely on accurately approximating general parametric expectations, i.e. expectations that depend on a parameter, uniformly on an interval. Applications of interest include, for example, the approximation of the characteristic function and of the cumulative distribution function of an uncertain system output. A further important consequence of the introduced approximation techniques for parametric expectations (i.e. for functions) is that they allow to construct multilevel Monte Carlo estimators for various robustness indicators, such as for a quantile (also known as value-at-risk) and for the conditional value-at-risk. These robustness indicators cannot be expressed as moments and are thus not easily accessible usually. In fact, here we provide a framework that allows to simultaneously estimate a cumulative distribution function, a quantile, and the associated conditional value-at-risk of an uncertain system output at the cost of a single multilevel Monte Carlo simulation, while each estimated quantity satisfies a prescribed tolerance goal

    Multilevel Monte Carlo Approximation of Distribution Functions and Densities

    Full text link

    Multilevel Markov Chain Monte Carlo Method for High-Contrast Single-Phase Flow Problems

    Full text link
    In this paper we propose a general framework for the uncertainty quantification of quantities of interest for high-contrast single-phase flow problems. It is based on the generalized multiscale finite element method (GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online GMsFEM stage can be varied to determine the solution resolution and the computational cost, and to efficiently generate samples at different levels. In particular, it is cheap to generate samples on coarse grids but with low resolution, and it is expensive to generate samples on fine grids with high accuracy. By suitably choosing the number of samples at different levels, one can leverage the expensive computation in larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain Monte Carlo method, which sequentially screens the proposal with different levels of approximations and reduces the number of evaluations required on fine grids, while combining the samples at different levels to arrive at an accurate estimate. The framework seamlessly integrates the multiscale features of the GMsFEM with the multilevel feature of the MLMC methods following the work in \cite{ketelson2013}, and our numerical experiments illustrate its efficiency and accuracy in comparison with standard Monte Carlo estimates.Comment: 29 pages, 6 figure

    Random Bit Multilevel Algorithms for Stochastic Differential Equations

    Full text link
    We study the approximation of expectations \E(f(X)) for solutions XX of SDEs and functionals f ⁣:C([0,1],Rr)Rf \colon C([0,1],\R^r) \to \R by means of restricted Monte Carlo algorithms that may only use random bits instead of random numbers. We consider the worst case setting for functionals ff from the Lipschitz class w.r.t.\ the supremum norm. We construct a random bit multilevel Euler algorithm and establish upper bounds for its error and cost. Furthermore, we derive matching lower bounds, up to a logarithmic factor, that are valid for all random bit Monte Carlo algorithms, and we show that, for the given quadrature problem, random bit Monte Carlo algorithms are at least almost as powerful as general randomized algorithms

    Multilevel Sparse Grid Methods for Elliptic Partial Differential Equations with Random Coefficients

    Full text link
    Stochastic sampling methods are arguably the most direct and least intrusive means of incorporating parametric uncertainty into numerical simulations of partial differential equations with random inputs. However, to achieve an overall error that is within a desired tolerance, a large number of sample simulations may be required (to control the sampling error), each of which may need to be run at high levels of spatial fidelity (to control the spatial error). Multilevel sampling methods aim to achieve the same accuracy as traditional sampling methods, but at a reduced computational cost, through the use of a hierarchy of spatial discretization models. Multilevel algorithms coordinate the number of samples needed at each discretization level by minimizing the computational cost, subject to a given error tolerance. They can be applied to a variety of sampling schemes, exploit nesting when available, can be implemented in parallel and can be used to inform adaptive spatial refinement strategies. We extend the multilevel sampling algorithm to sparse grid stochastic collocation methods, discuss its numerical implementation and demonstrate its efficiency both theoretically and by means of numerical examples
    corecore