257 research outputs found

    Tunable Silicon integrated photonics based on functional materials

    Get PDF
    This thesis is concerned with the design, fabrication, testing and development of tunable silicon photonic integrated circuits based on functional materials. This tunability is achieved by integrating liquid crystals, 2D materials and chalcogenide phase-change materials with silicon and silicon nitride integrated circuits. Switching the functional materials between their various states results in dramatic changes in the optical properties, with consequent changes in the optical response of the individual devices. Furthermore, such changes are volatile or non-volatile depending on the materials.Engineering and Physical Sciences Research Council (EPSRC

    Annual Report, 2015-2016

    Get PDF

    COMET: A Cross-Layer Optimized Optical Phase Change Main Memory Architecture

    Full text link
    Traditional DRAM-based main memory systems face several challenges with memory refresh overhead, high latency, and low throughput as the industry moves towards smaller DRAM cells. These issues have been exacerbated by the emergence of data-intensive applications in recent years. Memories based on phase change materials (PCMs) offer promising solutions to these challenges. PCMs store data in the material's phase, which can shift between amorphous and crystalline states when external thermal energy is supplied. This is often achieved using electrical pulses. Alternatively, using laser pulses and integration with silicon photonics offers a unique opportunity to realize high-bandwidth and low-latency photonic memories. Such a memory system may in turn open the possibility of realizing fully photonic computing systems. But to realize photonic memories, several challenges that are unique to the photonic domain such as crosstalk, optical loss management, and laser power overhead have to be addressed. In this work, we present COMET, the first cross-layer optimized optical main memory architecture that uses PCMs. In architecting COMET, we explore how to use silicon photonics and PCMs together to design a large-scale main memory system while addressing associated challenges. We explore challenges and propose solutions at the PCM cell, photonic memory circuit, and memory architecture levels. Based on our evaluations, COMET offers 7.1x better bandwidth, 15.1x lower EPB, and 3x lower latencies than the best-known prior work on photonic main memory architecture design

    Advanced photonic and electronic systems WILGA 2018

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers around 400 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2018 was the XLII edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2018 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445. WILGA 2018 works were published in Proc. SPIE vol.10808

    Static and reconfigurable devices for near-field and far-field terahertz applications

    Get PDF
    The terahertz frequency electromagnetic radiation has gathered a growing interest from the scientific and technological communities in the last 30 years, due to its capability to penetrate common materials, such as paper, fabrics, or some plastics and offer information on a length scale between 100 µm and 1 mm. Moreover, terahertz radiation can be employed for wireless communications, because it is able to sustain terabit-per-second wireless links, opening to the possibility of a new generation of data networks. However, the terahertz band is a challenging range of the electromagnetic spectrum in terms of technological development and it falls amidst the microwave and optical techniques. Even though this so-called “terahertz gap” is progressively narrowing, the demand of efficient terahertz sources and detectors, as well as passive components for the management of terahertz radiation, is still high. In fact, novel strategies are currently under investigation, aiming at improving the performance of terahertz devices and, at the same time, at reducing their structure complexity and fabrication costs. In this PhD work, two classes of devices are studied, one for near-field focusing and one for far-field radiation with high directivity. Some solutions for their practical implementation are presented. The first class encompasses several configurations of diffractive lenses for focusing terahertz radiation. A configuration for a terahertz diffractive lens is proposed, numerically optimized, and experimentally evaluated. It shows a better resolution than a standard configuration. Moreover, this lens is investigated with regard to the possibility to develop terahertz diffractive lenses with a tunable focal length by means of an electro-optical control. Preliminary numerical data present a dual-focus capability at terahertz frequencies. The second class encompasses advanced radiating systems for controlling the far-field radiating features at terahertz frequencies. These are designed by means of the formalism of leaky-wave theory. Specifically, the use of an electro-optical material is considered for the design of a leaky-wave antenna operating in the terahertz range, achieving very promising results in terms of reconfigurability, efficiency, and radiating capabilities. Furthermore, different metasurface topologies are studied. Their analytical and numerical investigation reveals a high directivity in radiating performance. Directions for the fabrication and experimental test at terahertz frequencies of the proposed radiating structures are addressed

    Optics for AI and AI for Optics

    Get PDF
    Artificial intelligence is deeply involved in our daily lives via reinforcing the digital transformation of modern economies and infrastructure. It relies on powerful computing clusters, which face bottlenecks of power consumption for both data transmission and intensive computing. Meanwhile, optics (especially optical communications, which underpin today’s telecommunications) is penetrating short-reach connections down to the chip level, thus meeting with AI technology and creating numerous opportunities. This book is about the marriage of optics and AI and how each part can benefit from the other. Optics facilitates on-chip neural networks based on fast optical computing and energy-efficient interconnects and communications. On the other hand, AI enables efficient tools to address the challenges of today’s optical communication networks, which behave in an increasingly complex manner. The book collects contributions from pioneering researchers from both academy and industry to discuss the challenges and solutions in each of the respective fields
    • …
    corecore