161 research outputs found

    High-Performance Solvers for Dense Hermitian Eigenproblems

    Full text link
    We introduce a new collection of solvers - subsequently called EleMRRR - for large-scale dense Hermitian eigenproblems. EleMRRR solves various types of problems: generalized, standard, and tridiagonal eigenproblems. Among these, the last is of particular importance as it is a solver on its own right, as well as the computational kernel for the first two; we present a fast and scalable tridiagonal solver based on the Algorithm of Multiple Relatively Robust Representations - referred to as PMRRR. Like the other EleMRRR solvers, PMRRR is part of the freely available Elemental library, and is designed to fully support both message-passing (MPI) and multithreading parallelism (SMP). As a result, the solvers can equally be used in pure MPI or in hybrid MPI-SMP fashion. We conducted a thorough performance study of EleMRRR and ScaLAPACK's solvers on two supercomputers. Such a study, performed with up to 8,192 cores, provides precise guidelines to assemble the fastest solver within the ScaLAPACK framework; it also indicates that EleMRRR outperforms even the fastest solvers built from ScaLAPACK's components

    Benefits from using mixed precision computations in the ELPA-AEO and ESSEX-II eigensolver projects

    Get PDF
    We first briefly report on the status and recent achievements of the ELPA-AEO (Eigenvalue Solvers for Petaflop Applications - Algorithmic Extensions and Optimizations) and ESSEX II (Equipping Sparse Solvers for Exascale) projects. In both collaboratory efforts, scientists from the application areas, mathematicians, and computer scientists work together to develop and make available efficient highly parallel methods for the solution of eigenvalue problems. Then we focus on a topic addressed in both projects, the use of mixed precision computations to enhance efficiency. We give a more detailed description of our approaches for benefiting from either lower or higher precision in three selected contexts and of the results thus obtained

    Recent developments in structural sensitivity analysis

    Get PDF
    Recent developments are reviewed in two major areas of structural sensitivity analysis: sensitivity of static and transient response; and sensitivity of vibration and buckling eigenproblems. Recent developments from the standpoint of computational cost, accuracy, and ease of implementation are presented. In the area of static response, current interest is focused on sensitivity to shape variation and sensitivity of nonlinear response. Two general approaches are used for computing sensitivities: differentiation of the continuum equations followed by discretization, and the reverse approach of discretization followed by differentiation. It is shown that the choice of methods has important accuracy and implementation implications. In the area of eigenproblem sensitivity, there is a great deal of interest and significant progress in sensitivity of problems with repeated eigenvalues. In addition to reviewing recent contributions in this area, the paper raises the issue of differentiability and continuity associated with the occurrence of repeated eigenvalues

    Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial

    Full text link
    This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661

    A polynomial Jacobi-Davidson solver with support for non-monomial bases and deflation

    Full text link
    [EN] Large-scale polynomial eigenvalue problems can be solved by Krylov methods operating on an equivalent linear eigenproblem (linearization) of size d center dot n where d is the polynomial degree and n is the problem size, or by projection methods that keep the computation in the n-dimensional space. Jacobi-Davidson belongs to the latter class of methods, and, since it is a preconditioned eigensolver, it may be competitive in cases where explicitly computing a matrix factorization is exceedingly expensive. However, a fully fledged implementation of polynomial Jacobi-Davidson has to consider several issues, including deflation to compute more than one eigenpair, use of non-monomial bases for the case of large degree polynomials, and handling of complex eigenvalues when computing in real arithmetic. We discuss these aspects and present computational results of a parallel implementation in the SLEPc library.This work was supported by Agencia Estatal de Investigación (AEI) under Grant TIN2016-75985-P, which includes European Commission ERDF funds.Campos, C.; Jose E. Roman (2020). A polynomial Jacobi-Davidson solver with support for non-monomial bases and deflation. BIT Numerical Mathematics. 60(2):295-318. https://doi.org/10.1007/s10543-019-00778-zS295318602Bai, Z., Su, Y.: SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26(3), 640–659 (2005)Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W., Karpeyev, D., Kaushik, D., Knepley, M., May, D., McInnes, L.C., Mills, R., Munson, T., Rupp, K., Sanan, P., Smith, B., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Technical report ANL-95/11—revision 3.10, Argonne National Laboratory (2018)Betcke, T., Kressner, D.: Perturbation, extraction and refinement of invariant pairs for matrix polynomials. Linear Algebra Appl. 435(3), 514–536 (2011)Betcke, T., Voss, H.: A Jacobi–Davidson-type projection method for nonlinear eigenvalue problems. Future Gen. Comput. Syst. 20(3), 363–372 (2004)Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39(2), 7:1–7:28 (2013)Campos, C., Roman, J.E.: Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc. SIAM J. Sci. Comput. 38(5), S385–S411 (2016)Effenberger, C.: Robust successive computation of eigenpairs for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 34(3), 1231–1256 (2013)Effenberger, C., Kressner, D.: Chebyshev interpolation for nonlinear eigenvalue problems. BIT 52(4), 933–951 (2012)Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20(1), 94–125 (1998)Guo, J.S., Lin, W.W., Wang, C.S.: Numerical solutions for large sparse quadratic eigenvalue problems. Linear Algebra Appl. 225, 57–89 (1995)Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)Higham, N.J., Al-Mohy, A.H.: Computing matrix functions. Acta Numer. 19, 159–208 (2010)Higham, N.J., Mackey, D.S., Tisseur, F.: The conditioning of linearizations of matrix polynomials. SIAM J. Matrix Anal. Appl. 28(4), 1005–1028 (2006)Hochbruck, M., Lochel, D.: A multilevel Jacobi–Davidson method for polynomial PDE eigenvalue problems arising in plasma physics. SIAM J. Sci. Comput. 32(6), 3151–3169 (2010)Hochstenbach, M.E., Sleijpen, G.L.G.: Harmonic and refined Rayleigh–Ritz for the polynomial eigenvalue problem. Numer. Linear Algebra Appl. 15(1), 35–54 (2008)Huang, T.M., Hwang, F.N., Lai, S.H., Wang, W., Wei, Z.H.: A parallel polynomial Jacobi–Davidson approach for dissipative acoustic eigenvalue problems. Comput. Fluids 45(1), 207–214 (2011)Hwang, F.N., Wei, Z.H., Huang, T.M., Wang, W.: A parallel additive Schwarz preconditioned Jacobi–Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation. J.Comput. Phys. 229(8), 2932–2947 (2010)Kressner, D.: A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114, 355–372 (2009)Kressner, D., Roman, J.E.: Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numer. Linear Algebra Appl. 21(4), 569–588 (2014)Lancaster, P.: Linearization of regular matrix polynomials. Electron. J. Linear Algebra 17, 21–27 (2008)Matsuo, Y., Guo, H., Arbenz, P.: Experiments on a parallel nonlinear Jacobi–Davidson algorithm. Procedia Comput. Sci. 29, 565–575 (2014)Meerbergen, K.: Locking and restarting quadratic eigenvalue solvers. SIAM J. Sci. Comput. 22(5), 1814–1839 (2001)Roman, J.E., Campos, C., Romero, E., Tomas, A.: SLEPc users manual. Technical report DSIC-II/24/02—Revision 3.10, D. Sistemes Informàtics i Computació, Universitat Politècnica de València (2018)Romero, E., Roman, J.E.: A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc. ACM Trans. Math. Softw. 40(2), 13:1–13:29 (2014)Rommes, J., Martins, N.: Computing transfer function dominant poles of large-scale second-order dynamical systems. SIAM J. Sci. Comput. 30(4), 2137–2157 (2008)Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM Publications, Philadelphia (2003)Sensiau, C., Nicoud, F., van Gijzen, M., van Leeuwen, J.W.: A comparison of solvers for quadratic eigenvalue problems from combustion. Int. J. Numer. Methods Fluids 56(8), 1481–1488 (2008)Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17(2), 401–425 (1996)Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., van der Vorst, H.A.: Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996)Sleijpen, G.L.G., van der Vorst, H.A., Meijerink, E.: Efficient expansion of subspaces in the Jacobi–Davidson method for standard and generalized eigenproblems. Electron. Trans. Numer. Anal. 7, 75–89 (1998)Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001)van Gijzen, M.B., Raeven, F.: The parallel computation of the smallest eigenpair of an acoustic problem with damping. Int. J. Numer. Methods Eng. 45(6), 765–777 (1999)van Noorden, T., Rommes, J.: Computing a partial generalized real Schur form using the Jacobi–Davidson method. Numer. Linear Algebra Appl. 14(3), 197–215 (2007)Voss, H.: A Jacobi–Davidson method for nonlinear and nonsymmetric eigenproblems. Comput. Struct. 85(17–18), 1284–1292 (2007
    • …
    corecore