1,844 research outputs found

    Balancing domain decomposition by constraints and perturbation

    Get PDF
    In this paper, we formulate and analyze a perturbed formulation of the balancing domain decomposition by constraints (BDDC) method. We prove that the perturbed BDDC has the same polylogarithmic bound for the condition number as the standard formulation. Two types of properly scaled zero-order perturbations are considered: one uses a mass matrix, and the other uses a Robin-type boundary condition, i.e, a mass matrix on the interface. With perturbation, the wellposedness of the local Neumann problems and the global coarse problem is automatically guaranteed, and coarse degrees of freedom can be defined only for convergence purposes but not well-posedness. This allows a much simpler implementation as no complicated corner selection algorithm is needed. Minimal coarse spaces using only face or edge constraints can also be considered. They are very useful in extreme scale calculations where the coarse problem is usually the bottleneck that can jeopardize scalability. The perturbation also adds extra robustness as the perturbed formulation works even when the constraints fail to eliminate a small number of subdomain rigid body modes from the standard BDDC space. This is extremely important when solving problems on unstructured meshes partitioned by automatic graph partitioners since arbitrary disconnected subdomains are possible. Numerical results are provided to support the theoretical findings.Peer ReviewedPostprint (published version

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing

    Get PDF
    This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time

    Parallel Anisotropic Unstructured Grid Adaptation

    Get PDF
    Computational Fluid Dynamics (CFD) has become critical to the design and analysis of aerospace vehicles. Parallel grid adaptation that resolves multiple scales with anisotropy is identified as one of the challenges in the CFD Vision 2030 Study to increase the capacity and capability of CFD simulation. The Study also cautions that computer architectures are undergoing a radical change and dramatic increases in algorithm concurrency will be required to exploit full performance. This paper reviews four different methods to parallel anisotropic grid generation. They cover both ends of the spectrum: (i) using existing state-of-the-art software optimized for a single core and modifying it for parallel platforms and (ii) designing and implementing scalable software with incomplete, but rapidly maturating functionality. A brief overview for each grid adaptation system is presented in the context of a telescopic approach for multilevel concurrency. These methods employ different approaches to enable parallel execution, which provides a unique opportunity to illustrate the relative behavior of each approach. Qualitative and quantitative metric evaluations are used to draw lessons for future developments in this critical area for parallel CFD simulation

    Scalable domain decomposition methods for finite element approximations of transient and electromagnetic problems

    Get PDF
    The main object of study of this thesis is the development of scalable and robust solvers based on domain decomposition (DD) methods for the linear systems arising from the finite element (FE) discretization of transient and electromagnetic problems. The thesis commences with a theoretical review of the curl-conforming edge (or Nédélec) FEs of the first kind and a comprehensive description of a general implementation strategy for h- and p- adaptive elements of arbitrary order on tetrahedral and hexahedral non-conforming meshes. Then, a novel balancing domain decomposition by constraints (BDDC) preconditioner that is robust for multi-material and/or heterogeneous problems posed in curl-conforming spaces is presented. The new method, in contrast to existent approaches, is based on the definition of the ingredients of the preconditioner according to the physical coefficients of the problem and does not require spectral information. The result is a robust and highly scalable preconditioner that preserves the simplicity of the original BDDC method. When dealing with transient problems, the time direction offers itself an opportunity for further parallelization. Aiming to design scalable space-time solvers, first, parallel-in-time parallel methods for linear and non-linear ordinary differential equations (ODEs) are proposed, based on (non-linear) Schur complement efficient solvers of a multilevel partition of the time interval. Then, these ideas are combined with DD concepts in order to design a two-level preconditioner as an extension to space-time of the BDDC method. The key ingredients for these new methods are defined such that they preserve the time causality, i.e., information only travels from the past to the future. The proposed schemes are weakly scalable in time and space-time, i.e., one can efficiently exploit increasing computational resources to solve more time steps in (approximately) the same time-to-solution. All the developments presented herein are motivated by the driving application of the thesis, the 3D simulation of the low-frequency electromagnetic response of High Temperature Superconductors (HTS). Throughout the document, an exhaustive set of numerical experiments, which includes the simulation of a realistic 3D HTS problem, is performed in order to validate the suitability and assess the parallel performance of the High Performance Computing (HPC) implementation of the proposed algorithms.L’objecte principal d’estudi d’aquesta tesi és el desenvolupament de solucionadors escalables i robustos basats en mètodes de descomposició de dominis (DD) per a sistemes lineals que sorgeixen en la discretització mitjançant elements finits (FE) de problemes transitoris i electromagnètics. La tesi comença amb una revisió teòrica dels FE d’eix (o de Nédélec) de la primera família i una descripció exhaustiva d’una estratègia d’implementació general per a elements h- i p-adaptatius d’ordre arbitrari en malles de tetraedres i hexaedres noconformes. Llavors, es presenta un nou precondicionador de descomposició de dominis balancejats per restricció (BDDC) que és robust per a problemes amb múltiples materials i/o heterogenis definits en espais curl-conformes. El nou mètode, en contrast amb els enfocaments existents, està basat en la definició dels ingredients del precondicionador segons els coeficients físics del problema i no requereix informació espectral. El resultat és un precondicionador robust i escalable que preserva la simplicitat del mètode original BDDC. Quan tractem amb problemes transitoris, la direcció temporal ofereix ella mateixa l’oportunitat de seguir explotant paral·lelisme. Amb l’objectiu de dissenyar precondicionadors en espai-temps, primer, proposem solucionadors paral·lels en temps per equacions diferencials lineals i no-lineals, basats en un solucionador eficient del complement de Schur d’una partició multinivell de l’interval de temps. Seguidament, aquestes idees es combinen amb conceptes de DD amb l’objectiu de dissenyar precondicionadors com a extensió a espai-temps dels mètodes de BDDC. Els ingredients clau d’aquests nous mètodes es defineixen de tal manera que preserven la causalitat del temps, on la informació només viatja de temps passats a temps futurs. Els esquemes proposats són dèbilment escalables en temps i en espai-temps, és a dir, es poden explotar eficientment recursos computacionals creixents per resoldre més passos de temps en (aproximadament) el mateix temps transcorregut de càlcul. Tots els desenvolupaments presentats aquí són motivats pel problema d’aplicació de la tesi, la simulació de la resposta electromagnètica de baixa freqüència dels superconductors d’alta temperatura (HTS) en 3D. Al llarg del document, es realitza un conjunt exhaustiu d’experiments numèrics, els quals inclouen la simulació d’un problema de HTS realista en 3D, per validar la idoneïtat i el rendiment paral·lel de la implementació per a computació d’alt rendiment dels algorismes proposatsPostprint (published version
    corecore