1,636 research outputs found

    Schnelle Löser für partielle Differentialgleichungen

    Get PDF
    The workshop Schnelle Löser für partielle Differentialgleichungen, organised by Randolph E. Bank (La Jolla), Wolfgang Hackbusch(Leipzig), Gabriel Wittum (Heidelberg) was held May 22nd - May 28th, 2005. This meeting was well attended by 47 participants with broad geographic representation from 9 countries and 3 continents. This workshop was a nice blend of researchers with various backgrounds

    Computing transition rates for the 1-D stochastic Ginzburg--Landau--Allen--Cahn equation for finite-amplitude noise with a rare event algorithm

    Get PDF
    In this paper we compute and analyse the transition rates and duration of reactive trajectories of the stochastic 1-D Allen-Cahn equations for both the Freidlin-Wentzell regime (weak noise or temperature limit) and finite-amplitude white noise, as well as for small and large domain. We demonstrate that extremely rare reactive trajectories corresponding to direct transitions between two metastable states are efficiently computed using an algorithm called adaptive multilevel splitting. This algorithm is dedicated to the computation of rare events and is able to provide ensembles of reactive trajectories in a very efficient way. In the small noise limit, our numerical results are in agreement with large-deviation predictions such as instanton-like solutions, mean first passages and escape probabilities. We show that the duration of reactive trajectories follows a Gumbel distribution like for one degree of freedom systems. Moreover, the mean duration growths logarithmically with the inverse temperature. The prefactor given by the potential curvature grows exponentially with size. The main novelty of our work is that we also perform an analysis of reactive trajectories for large noises and large domains. In this case, we show that the position of the reactive front is essentially a random walk. This time, the mean duration grows linearly with the inverse temperature and quadratically with the size. Using a phenomenological description of the system, we are able to calculate the transition rate, although the dynamics is described by neither Freidlin--Wentzell or Eyring--Kramers type of results. Numerical results confirm our analysis

    Schnelle Löser für Partielle Differentialgleichungen

    Get PDF
    The workshop Schnelle Löser für partielle Differentialgleichungen, organised by Randolph E. Bank (La Jolla), Wolfgang Hackbusch (Leipzig), and Gabriel Wittum (Frankfurt am Main), was held May 22nd–May 28th, 2011. This meeting was well attended by 54 participants with broad geographic representation from 7 countries and 3 continents. This workshop was a nice blend of researchers with various backgrounds

    A Vortex Method for Bi-phasic Fluids Interacting with Rigid Bodies

    Get PDF
    We present an accurate Lagrangian method based on vortex particles, level-sets, and immersed boundary methods, for animating the interplay between two fluids and rigid solids. We show that a vortex method is a good choice for simulating bi-phase flow, such as liquid and gas, with a good level of realism. Vortex particles are localized at the interfaces between the two fluids and within the regions of high turbulence. We gain local precision and efficiency from the stable advection permitted by the vorticity formulation. Moreover, our numerical method straightforwardly solves the two-way coupling problem between the fluids and animated rigid solids. This new approach is validated through numerical comparisons with reference experiments from the computational fluid community. We also show that the visually appealing results obtained in the CG community can be reproduced with increased efficiency and an easier implementation

    Schnelle Löser für Partielle Differentialgleichungen

    Get PDF
    This workshop was well attended by 52 participants with broad geographic representation from 11 countries and 3 continents. It was a nice blend of researchers with various backgrounds
    corecore