118 research outputs found

    Full waveform analysis for long-range 3D imaging laser radar

    Get PDF
    The new generation of 3D imaging systems based on laser radar (ladar) offers significant advantages in defense and security applications. In particular, it is possible to retrieve 3D shape information directly from the scene and separate a target from background or foreground clutter by extracting a narrow depth range from the field of view by range gating, either in the sensor or by postprocessing. We discuss and demonstrate the applicability of full-waveform ladar to produce multilayer 3D imagery, in which each pixel produces a complex temporal response that describes the scene structure. Such complexity caused by multiple and distributed reflection arises in many relevant scenarios, for example in viewing partially occluded targets, through semitransparent materials (e.g., windows) and through distributed reflective media such as foliage. We demonstrate our methodology on 3D image data acquired by a scanning time-of-flight system, developed in our own laboratories, which uses the time-correlated single-photon counting technique

    Full waveform LiDAR for adverse weather conditions

    Get PDF

    A Sketching Framework for Reduced Data Transfer in Photon Counting Lidar

    Get PDF
    Single-photon lidar has become a prominent tool for depth imaging in recent years. At the core of the technique, the depth of a target is measured by constructing a histogram of time delays between emitted light pulses and detected photon arrivals. A major data processing bottleneck arises on the device when either the number of photons per pixel is large or the resolution of the time stamp is fine, as both the space requirement and the complexity of the image reconstruction algorithms scale with these parameters. We solve this limiting bottleneck of existing lidar techniques by sampling the characteristic function of the time of flight (ToF) model to build a compressive statistic, a so-called sketch of the time delay distribution, which is sufficient to infer the spatial distance and intensity of the object. The size of the sketch scales with the degrees of freedom of the ToF model (number of objects) and not, fundamentally, with the number of photons or the time stamp resolution. Moreover, the sketch is highly amenable for on-chip online processing. We show theoretically that the loss of information for compression is controlled and the mean squared error of the inference quickly converges towards the optimal Cram\'er-Rao bound (i.e. no loss of information) for modest sketch sizes. The proposed compressed single-photon lidar framework is tested and evaluated on real life datasets of complex scenes where it is shown that a compression rate of up-to 150 is achievable in practice without sacrificing the overall resolution of the reconstructed image.Comment: 16 pages, 20 figure

    Advances in Waveform and Photon Counting Lidar Processing for Forest Vegetation Applications

    Get PDF
    Full waveform (FW) and photon counting LiDAR (PCL) data have garnered greater attention due to increasing data availability, a wealth of information they contain and promising prospects for large scale vegetation mapping. However, many factors such as complex processing steps and scarce non-proprietary tools preclude extensive and practical uses of these data for vegetation characterization. Therefore, the overall goal of this study is to develop algorithms to process FW and PCL data and to explore their potential in real-world applications. Study I explored classical waveform decomposition methods such as the Gaussian decomposition, Richardson–Lucy (RL) deconvolution and a newly introduced optimized Gold deconvolution to process FW LiDAR data. Results demonstrated the advantages of the deconvolution and decomposition method, and the three approaches generated satisfactory results, while the best performances varied when different criteria were used. Built upon Study I, Study II applied the Bayesian non-linear modeling concepts for waveform decomposition and quantified the propagation of error and uncertainty along the processing steps. The performance evaluation and uncertainty analysis at the parameter, derived point cloud and surface model levels showed that the Bayesian decomposition could enhance the credibility of decomposition results in a probabilistic sense to capture the true error of estimates and trace the uncertainty propagation along the processing steps. In study III, we exploited FW LiDAR data to classify tree species through integrating machine learning methods (the Random forests (RF) and Conditional inference forests (CF)) and Bayesian inference method. Results of classification accuracy highlighted that the Bayesian method was a superior alternative to machine learning methods, and rendered users with more confidence for interpreting and applying classification results to real-world tasks such as forest inventory. Study IV focused on developing a framework to derive terrain elevation and vegetation canopy height from test-bed sensor data and to pre-validate the capacity of the upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission. The methodology developed in this study illustrates plausible ways of processing the data that are structurally similar to expected ICESat-2 data and holds the potential to be a benchmark for further method adjustment once genuine ICESat-2 are available
    • …
    corecore