400 research outputs found

    Multilayer perceptron for gait type classification based on inertial sensors data

    Full text link

    Inertial Sensor Based Modelling of Human Activity Classes: Feature Extraction and Multi-sensor Data Fusion Using Machine Learning Algorithms

    Get PDF
    Wearable inertial sensors are currently receiving pronounced interest due to applications in unconstrained daily life settings, ambulatory monitoring and pervasive computing systems. This research focuses on human activity recognition problem, in which inputs are multichannel time series signals acquired from a set of body-worn inertial sensors and outputs are automatically classified human activities. A general-purpose framework has been presented for designing and evaluating activity recognition system with six different activities using machine learning algorithms such as support vector machine (SVM) and artificial neural networks (ANN). Several feature selection methods were explored to make the recognition process faster by experimenting on the features extracted from the accelerometer and gyroscope time series data collected from a number of volunteers. In addition, a detailed discussion is presented to explore how different design parameters, for example, the number of features and data fusion from multiple sensor locations - impact on overall recognition performance

    Human Gait Model Development for Objective Analysis of Pre/Post Gait Characteristics Following Lumbar Spine Surgery

    Get PDF
    Although multiple advanced tools and methods are available for gait analysis, the gait and its related disorders are usually assessed by visual inspection in the clinical environment. This thesis aims to introduce a gait analysis system that provides an objective method for gait evaluation in clinics and overcomes the limitations of the current gait analysis systems. Early identification of foot drop, a common gait disorder, would become possible using the proposed methodology

    An Evolutionary Perspective for Network Centric Therapy through Wearable and Wireless Systems for Reflex, Gait, and Movement Disorder Assessment with Machine Learning

    Get PDF
    Wearable and wireless systems have progressively evolved to achieve the capabilities of Network Centric Therapy. Network Centric Therapy comprises the application of wearable and wireless inertial sensors for the quantification of human movement, such as reflex response, gait, and movement disorders, with machine learning classification representing advanced diagnostics. With wireless access to a functional Cloud computing environment Network Centric Therapy enables subjects to be evaluated at any location of choice with Internet connectivity and expert medical post-processing resources situated anywhere in the world. The evolutionary origins leading to the presence of Network Centric Therapy are detailed. With the historical perspective and state of the art presented, future concepts are addressed

    Determining the optimal features in freezing of gait detection through a single waist accelerometer in home environments

    Get PDF
    Freezing of gait (FoG) is one of the most disturbing and incapacitating symptoms in Parkinson's disease. It is defined as a sudden block in effective stepping, provoking anxiety, stress and falls. FoG is usually evaluated by means of different questionnaires; however, this method has shown to be not reliable, since it is subjective due to its dependence on patients’ and caregivers’ judgment. Several authors have analyzed the usage of MEMS inertial systems to detect FoG with the aim of objectively evaluating it. So far, specific methods based on accelerometer's frequency response has been employed in many works; nonetheless, since they have been developed and tested in laboratory conditions, their performance is commonly poor when being used at patients’ home. Therefore, this work proposes a new set of features that aims to detect FoG in real environments by using accelerometers. This set of features is compared with three previously reported approaches to detect FoG. The different feature sets are trained by means of several machine learning classifiers; furthermore, different window sizes are also evaluated. In addition, a greedy subset selection process is performed to reduce the computational load of the method and to enable a real-time implementation. Results show that the proposed method detects FoG at patients’ home with 91.7% and 87.4% of sensitivity and specificity, respectively, enhancing the results of former methods between a 5% and 11% and providing a more balanced rate of true positives and true negatives.Peer ReviewedPostprint (published version

    Classification of healthy, Alzheimer and Parkinson populations with a multi-branch neural network

    Get PDF
    Signal processing, for delimitation of the target events and parametrization, is usually required when instrumented assessment is conducted to determine an individual’s functional status. However, these procedures may rule out relevant information obtained by sensors. To prevent this, the use of models based on neural networks that automatically extract relevant features from the raw signal may improve the characterization of the functional status. Thus, the aim of the study was to determine the classification accuracy of a multi-head convolutional layered neural network (CNN) using a simple functional mobility test in people with different conditions. The raw data from an inertial sensor embedded in a smartphone worn by 90 volunteers (i.e. 30 volunteers with Alzheimer’s disease, 30 with Parkinson’s disease and 30 healthy elderly people) was obtained. The CNN classification accuracy was compared to that of the two parametric classifiers, namely, linear discriminant analysis and multilayer perceptron, a neural network-based classifier. As a result, the validation process revealed that the CNN classifier correctly assigned 100% of the participants to each group. The best accuracy in pathology classification for the two parametric classifiers ranged from 55% to 88%. Therefore, the CNN model provided enhanced classification accuracy as compared to the parametric approaches, even better than the neural network-based classifier. Non parametrization may increase relevant information, thus enhancing pathology impact characterization

    Analysis of Parkinson's Disease Gait using Computational Intelligence

    Get PDF
    Millions of individuals throughout the world are living with Parkinson’s disease (PD), a neurodegenerative condition whose symptoms are difficult to differentiate from those of other disorders. Freezing of gait (FOG) is one of the signs of Parkinson’s disease that have been utilized as the main diagnostic factor. Bradykinesia, tremors, depression, hallucinations, cognitive impairment, and falls are all common symptoms of Parkinson’s disease (PD). This research uses a dataset that captures data on individuals with PD who suffer from freezing of gait. This dataset includes data for medication in both the “On” and “Off” stages (denoting whether patients have taken their medicines or not). The dataset is comprised of four separate experiments, which are referred to as Voluntary Stop, Timed Up and Go (TUG), Simple Motor Task, and Dual Motor and Cognitive Task. Each of these tests has been carried out over a total of three separate attempts (trials) to verify that they are both reliable and accurate. The dataset was used for four significant challenges. The first challenge is to differentiate between people with Parkinson’s disease and healthy volunteers, and the second task is to evaluate effectiveness of medicines on the patients. The third task is to detect episodes of FOG in each individual, and the last task is to predict the FOG episode at the time of occurrence. For the last task, the author proposed. a new framework to make real-time predictions for detecting FOG, in which the results demonstrated the effectiveness of the approach. It is worth mentioning that techniques from many classifiers have been combined in order to reduce the likelihood of being biased toward a single approach. Multilayer Perceptron, K-Nearest Neighbors, random Forest, and Decision Tree Classifier all produced the best results when applied to the first three tasks with an accuracy of more than 90% amongst the classifiers that were investigated
    • …
    corecore