620 research outputs found

    Neural Networks-Based Turbo Equalization of a Satellite Communication Channel

    Get PDF
    International audienceThis paper proposes neural networks-based turbo equalization (TEQ) applied to a non linear channel. Based on a Volterra model of the satellite non linear communication channel, we derive a soft input soft output (SISO) radial basis function (RBF) equalizer that can be used in an iterative equalization in order to improve the system performance. In particular, it is shown that the RBF-based TEQ is able to achieve its matched filter bound (MFB) within few iterations. The paper also proposes a blind implementation of the TEQ using a multilayer perceptron (MLP) as an adaptive model of the nonlinear channel. Asymptotic analysis as well as reduced complexity implementations are also presented and discussed

    Machine-learning nonstationary noise out of gravitational-wave detectors

    Get PDF
    Signal extraction out of background noise is a common challenge in high-precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal-to-noise ratio of the detection, witness sensors are often used to independently measure background noises and subtract them from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are routinely implemented in many experiments. However, when the noise coupling is nonstationary, linear techniques often fail or are suboptimal. Inspired by the properties of the background noise in gravitational wave detectors, this work develops a novel algorithm to efficiently characterize and remove nonstationary noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the algorithm is described in its most general formulation, and its efficiency is demonstrated with examples from the data of the Advanced LIGO gravitational-wave observatory, where we could obtain an improvement of the detector gravitational-wave reach without introducing any bias on the source parameter estimation

    Error propagation and recovery in decision-feedback equalizers for nonlinear channels

    Get PDF
    ©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Nonlinear intersymbol interference is often present in communication and digital storage channels. Decision-feedback equalizers (DFEs) can decrease this nonlinear effect by including appropriate nonlinear feedback filters. Although various applications of these types of equalizers have been published in the literature, the analysis of their stability and error recovery has not appeared. We consider a DFE with a nonlinear feedback filter based on a discrete Volterra series. We extend error propagation, error probability, stability, and error recovery time results for Nth order nonlinear channelsTsimbinos, J. White, L.B

    Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    Get PDF
    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6

    Adaptive weighted least squares algorithm for Volterra signal modeling

    No full text
    Published versio

    Non-linear adaptive equalization based on a multi-layer perceptron architecture.

    Get PDF
    corecore