125 research outputs found

    Spatio-temporal prediction of soil moisture using soil maps, topographic indices and SMAP retrievals

    Get PDF
    Milder winters and extended wetter periods in spring and autumn limit the amount of time available for carrying out ground-based forest operations on soils with satisfactory bearing capacity. Thus, damage to soil in form of compaction and displacement is reported to be becoming more widespread. The prediction of trafficability has become one of the most central issues in planning of mechanized harvesting operations. The work presented looks at methods to model field measured spatio-temporal variations of soil moisture content (SMC, [%vol]) – a crucial factor for soil strength and thus trafficability. We incorporated large-scaled maps of soil characteristics, high-resolution topographic information – depth-to-water (DTW) and topographic wetness index – and openly available temporal soil moisture retrievals provided by the NASA Soil Moisture Active Passive mission. Time-series measurements of SMC were captured at six study sites across Europe. These data were then used to develop linear models, a generalized additive model, and the machine learning algorithms Random Forest (RF) and eXtreme Gradient Boosting (XGB). The models were trained on a randomly selected 10% subset of the dataset. Predictions of SMC made with RF and XGB attained the highest R2 values of 0.49 and 0.51, respectively, calculated on the remaining 90% test set. This corresponds to a major increase in predictive performance, compared to basic DTW maps (R2 = 0.022). Accordingly, the quality for predicting wet soils was increased by 49% when XGB was applied (Matthews correlation coefficient = 0.45). We demonstrated how open access data can be used to clearly improve the prediction of SMC and enable adequate trafficability mappings with high spatial and temporal resolution. Spatio-temporal modelling could contribute to sustainable forest management.publishedVersio

    Machine Learning Approaches for Natural Resource Data

    Get PDF
    Abstract Real life applications involving efficient management of natural resources are dependent on accurate geographical information. This information is usually obtained by manual on-site data collection, via automatic remote sensing methods, or by the mixture of the two. Natural resource management, besides accurate data collection, also requires detailed analysis of this data, which in the era of data flood can be a cumbersome process. With the rising trend in both computational power and storage capacity, together with lowering hardware prices, data-driven decision analysis has an ever greater role. In this thesis, we examine the predictability of terrain trafficability conditions and forest attributes by using a machine learning approach with geographic information system data. Quantitative measures on the prediction performance of terrain conditions using natural resource data sets are given through five distinct research areas located around Finland. Furthermore, the estimation capability of key forest attributes is inspected with a multitude of modeling and feature selection techniques. The research results provide empirical evidence on whether the used natural resource data is sufficiently accurate enough for practical applications, or if further refinement on the data is needed. The results are important especially to forest industry since even slight improvements to the natural resource data sets utilized in practice can result in high saves in terms of operation time and costs. Model evaluation is also addressed in this thesis by proposing a novel method for estimating the prediction performance of spatial models. Classical model goodness of fit measures usually rely on the assumption of independently and identically distributed data samples, a characteristic which normally is not true in the case of spatial data sets. Spatio-temporal data sets contain an intrinsic property called spatial autocorrelation, which is partly responsible for breaking these assumptions. The proposed cross validation based evaluation method provides model performance estimation where optimistic bias due to spatial autocorrelation is decreased by partitioning the data sets in a suitable way. Keywords: Open natural resource data, machine learning, model evaluationTiivistelmä Käytännön sovellukset, joihin sisältyy luonnonvarojen hallintaa ovat riippuvaisia tarkasta paikkatietoaineistosta. Tämä paikkatietoaineisto kerätään usein manuaalisesti paikan päällä, automaattisilla kaukokartoitusmenetelmillä tai kahden edellisen yhdistelmällä. Luonnonvarojen hallinta vaatii tarkan aineiston keräämisen lisäksi myös sen yksityiskohtaisen analysoinnin, joka tietotulvan aikakautena voi olla vaativa prosessi. Nousevan laskentatehon, tallennustilan sekä alenevien laitteistohintojen myötä datapohjainen päätöksenteko on yhä suuremmassa roolissa. Tämä väitöskirja tutkii maaston kuljettavuuden ja metsäpiirteiden ennustettavuutta käyttäen koneoppimismenetelmiä paikkatietoaineistojen kanssa. Maaston kuljettavuuden ennustamista mitataan kvantitatiivisesti käyttäen kaukokartoitusaineistoa viideltä eri tutkimusalueelta ympäri Suomea. Tarkastelemme lisäksi tärkeimpien metsäpiirteiden ennustettavuutta monilla eri mallintamistekniikoilla ja piirteiden valinnalla. Väitöstyön tulokset tarjoavat empiiristä todistusaineistoa siitä, onko käytetty luonnonvaraaineisto riittävän laadukas käytettäväksi käytännön sovelluksissa vai ei. Tutkimustulokset ovat tärkeitä erityisesti metsäteollisuudelle, koska pienetkin parannukset luonnonvara-aineistoihin käytännön sovelluksissa voivat johtaa suuriin säästöihin niin operaatioiden ajankäyttöön kuin kuluihin. Tässä työssä otetaan kantaa myös mallin evaluointiin esittämällä uuden menetelmän spatiaalisten mallien ennustuskyvyn estimointiin. Klassiset mallinvalintakriteerit nojaavat yleensä riippumattomien ja identtisesti jakautuneiden datanäytteiden oletukseen, joka ei useimmiten pidä paikkaansa spatiaalisilla datajoukoilla. Spatio-temporaaliset datajoukot sisältävät luontaisen ominaisuuden, jota kutsutaan spatiaaliseksi autokorrelaatioksi. Tämä ominaisuus on osittain vastuussa näiden oletusten rikkomisesta. Esitetty ristiinvalidointiin perustuva evaluointimenetelmä tarjoaa mallin ennustuskyvyn mitan, missä spatiaalisen autokorrelaation vaikutusta vähennetään jakamalla datajoukot sopivalla tavalla. Avainsanat: Avoin luonnonvara-aineisto, koneoppiminen, mallin evaluoint

    Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape

    Get PDF
    Spatially extensive high-resolution soil moisture mapping is valuable in practical forestry and land management, but challenging. Here we present a novel technique involving use of LIDAR-derived terrain indices and machine learning (ML) algorithms capable of accurately modeling soil moisture at 2 m spatial resolution across the entire Swedish forest landscape. We used field data from about 20,000 sites across Sweden to train and evaluate multiple ML models. The predictor features (variables) included a suite of terrain indices generated from a national LIDAR digital elevation model and ancillary environmental features, including surficial geology, climate and land use, enabling adjustment of soil moisture class maps to regional or local conditions. Extreme gradient boosting (XGBoost) provided better performance for a 2-class model, manifested by Cohen's Kappa and Matthews Correlation Coefficient (MCC) values of 0.69 and 0.68, respectively, than the other tested ML methods: Artificial Neural Network, Random Forest, Support Vector Machine, and Naive Bayes classification. The depth to water index, topographic wetness index, and `wetland' categorization derived from Swedish property maps were the most important predictors for all models. The presented technique enabled generation of a 3-class model with Cohen's Kappa and MCC values of 0.58. In addition to the classified moisture maps, we investigated the technique's potential for producing continuous soil moisture maps. We argue that the probability of a pixel being classified as wet from a 2-class model can be used as a 0-100% index (dry to wet) of soil moisture, and the resulting maps could provide more valuable information for practical forest management than classified maps

    Assimilation des données GRACE dans le modèle MESH pour l’amélioration de l'estimation de l'équivalent en eau de la neige

    Get PDF
    Abstract: Water storage changes over space and time play a major rule in the Earth’s climate system through the exchange of water and energy fluxes among the Earth’s water storage compartments and between atmosphere, continents, and oceans. In many parts of northern-latitude areas spring meltwater controls the availability of freshwater resources. With respect to terrestrial hydrologic process, snow water equivalent (SWE) is the most critical snow characteristic to hydrologists and water resource managers. The first objective of this study examined the spatiotemporal variations of terrestrial water storages and their linkages with SWE variabilities over Canada. Terrestrial water storage anomaly (TWSA) from the Gravity Recovery and Climate Experiment (GRACE), the WaterGAP Global Hydrology Model (WGHM), and the Global Land Data Assimilation System (GLDAS) were employed. SWE anomaly (SWEA) products were provided by the Global Snow Monitoring for Climate Research version 2 (GlobSnow2), Advanced Microwave Scanning Radiometer‐Earth Observing System (AMSR-E), and Canadian Meteorological Centre (CMC). The grid cell (1°×1°) and basin-averaged analyses were applied to find any possible relationship between TWSA and SWEA over the Canadian territory, from December 2002 to March 2011. Results showed that GRACE versus CMC provided the highest percentage of significant positive correlation (62.4% of the 1128 grid cells), with an average significant positive correlation coefficient of 0.5, and a maximum of 0.9. In western Canada, GRACE correlated better with multiple SWE data sets than GLDAS. Yet, over eastern Canada, mainly in the northern Québec area (~ 55ºN), GRACE provided weak or insignificant correlations with all snow products, while GLDAS appeared to be significantly correlated. For the TWSA-SWEA analysis at the basin-averaged scale, significant relationships were observed between TWSA and SWEA for most of the fifteen basins considered (53% to 80% of the basins, depending on the SWE products considered). The best results were obtained with the CMC SWE products, compared to satellite-based SWE data. Stronger relationships were found in snow-dominated basins (Rs >= 0.7), such as the Liard [root mean square error (RMSE) = 21.4 mm] and Peace Basins (RMSE = 26.76 mm). However, despite high snow accumulation in northern Québec, GRACE showed weak or insignificant correlations with SWEA, regardless of the data sources. The same behavior was observed in the western Hudson Bay Basin. In both regions, it was found that the contribution of non-SWE compartments, including wetland, surface water, as well as soil water storages has a significant impact on the variations of total storage. These components were estimated using the WGHM simulations and then subtracted from GRACE observations. The GRACE-derived SWEA correlation results showed improved relationships with three SWEA products (CMC, GlobSnow2, AMSR-E). The improvement is particularly important in the sub-basins of the Hudson Bay, where very weak and insignificant results were previously found with GRACE TWSA data. GRACE-derived SWEA showed a significant relationship with CMC data in 93% of the basins (13% more than GRACE TWSA). In general, results revealed the importance of SWE changes in association with the terrestrial water storage (TWS) variations. The second objective of this thesis investigates whether integration of remotely sensed terrestrial water storage (TWS) information, which is derived from GRACE, can improve SWE and streamflow simulations within a semi-distributed hydrology land surface model. A data assimilation (DA) framework was developed to combine TWS observations with the MESH (Modélisation Environnementale Communautaire – Surface Hydrology) model using an ensemble Kalman smoother (EnKS). This study examined the incorporation and development of the ensemble-based GRACE data assimilation framework into the MESH modeling framework for the first time. The snow-dominated Liard Basin was selected as a case study. The proposed assimilation methodology reduced bias of monthly SWE simulations at the basin scale by 17.5 % and improved unbiased root-mean-square difference (ubRMSD) by 23 %. At the grid scale, the DA method improved ubRMSD values and correlation coefficients of SWE estimates for 85 % and 97 % of the grid cells, respectively. Effects of GRACE DA on streamflow simulations were evaluated against observations from three river gauges, where it could effectively improve the simulation of high flows during snowmelt season from April to June. The influence of GRACE DA on the total flow volume and low flows was found to be variable. In general, the use of GRACE observations in the assimilation framework not only improved the simulation of SWE, but also effectively influenced the simulation of streamflow estimates.Les variations dans l'espace et le temps du stock d'eau à travers jouent un rôle important dans le système climatique de la Terre à travers l'échange des flux d'eau et d'énergie entre les compartiments du stock d’eau de la Terre, et entre l'atmosphère, les continents et les océans. Dans les régions nordiques, la fonte de la neige contrôle la disponibilité des ressources en eau. Concernant le processus hydrologique terrestre, l'équivalent en eau de la neige (SWE) est la caractéristique de neige la plus importante pour les hydrologues et les gestionnaires des ressources en eau. Le premier objectif de cette étude a examiné les variations spatio-temporelles des réservoirs terrestres d'eau et leurs liens avec les variabilités de SWE au Canada. Des anomalies de stockage d'eau terrestre (TWSA) provenant de GRACE (Gravity Recovery and Climate Experiment), du modèle hydrologique mondial WaterGAP (WGHM) et du modèle GLDAS (Global Land Data Assimilation System) ont été utilisées. Les produits du SWEA (Snow Water Equiavalent Anomaly) sont fournis par le GlobSnow2 (Global Snow Monitoring for Climate Research version 2), le AMSR-E (Advanced Microwave Scanning Radiometer‐Earth Observing System) et le Centre météorologique canadien (CMC). L'analyse par cellule de grille (1°×1°) a été appliquée pour trouver toute relation possible entre TWSA et SWEA sur le territoire canadien, de décembre 2002 à mars 2011. Les résultats montrent que GRACE par rapport à CMC a fourni le pourcentage le plus élevé de corrélation positive significative (62,4% des 1128 cellules de la grille), avec un coefficient de corrélation positif significatif moyen de 0,5 et un maximum de 0,9. Dans la partie ouest du pays, GRACE a montré un meilleur accord avec plusieurs produits SWE que GLDAS. Pourtant, dans l'est du Canada, principalement dans le nord du Québec (~ 55° N), GRACE a fourni des corrélations faibles ou insignifiantes avec tous les produits SWE, contrairement à GLDAS qui semblait être significativement corrélé. Dans le cas de l’analyse à l'échelle du bassin versant, les relations significatives ont été observées entre TWSA et SWEA pour la plupart des quinze bassins considérés (53% à 80% des bassins, selon les produits SWE considérés). Les meilleurs résultats ont été obtenus avec les produits CMC SWE, par rapport aux données SWE satellitaires. Des relations plus fortes ont été trouvées dans les bassins dominés par la neige (Rs> = 0,7), tels que le bassin versant de Liard [erreur quadratique moyenne (RMSE) = 21,4 mm] et le bassin versant de Peace (RMSE = 26,76 mm). Cependant, malgré une forte accumulation de neige dans le nord du Québec, GRACE a montré des corrélations faibles ou insignifiantes avec SWEA, peu importent les sources de données. Le même comportement a été observé dans le bassin versant ouest de la Baie d’Hudson. Dans les deux régions, il a été constaté que la contribution des compartiments non-SWE, y compris les zones humides, les eaux de surface, ainsi que les stocks d'eau du sol a un effet significatif sur les variations du stock total. Ces composantes ont été estimées à l'aide des simulations du modèle WGHM, puis soustraites des observations GRACE. Ces résultats de corrélation SWEA dérivés de GRACE ont montré une amélioration des relations avec les trois produits SWE (CMC, GlobSnow2, AMSR-E). L'amélioration est particulièrement importante dans les sous-bassins de la Baie d’Hudson, où des résultats très faibles et insignifiants avaient été précédemment trouvés avec les données GRACE TWSA. La SWEA dérivée de GRACE a montré une relation significative avec les données CMC dans 93% des bassins (13% de plus que GRACE TWSA). En somme, les résultats obtenus dans ce premier objectif ont montré le rôle important du SWE dans les variations du stock terrestre de l'eau dans la région d’étude. Le deuxième objectif de cette thèse examine si l'intégration des informations de TWS (terrestrial water storage) dérivées de GRACE (Gravity Recovery and Climate Experiment), peut améliorer les simulations du SWE et du débit d’eau dans un modèle hydrologique semi-distribué de schéma de surface. Un cadre d'assimilation de données (DA) a été développé pour combiner les observations TWS avec le modèle MESH (Modélisation Environnementale Communautaire - Hydrologie de Surface) en utilisant un ensemble Kalman Smoother (EnKS). Cette étude était la première du genre à tenter une assimilation des données GRACE dans le modèle MESH pour améliorer l’estimation du SWE. Le bassin versant de la Liard dominé par la neige a été choisi pour le site d’étude. À l’échelle du bassin versant, la méthodologie d'assimilation proposée a réduit le biais des simulations mensuelles de SWE à 17,5% et amélioré le ubRMSD (unbiased root-mean-square difference) de 23%. À l'échelle de la grille, la méthode DA a amélioré l’estimation du SWE pour les valeurs ubRMSD et les coefficients de corrélation pour 85% et 97% des cellules de la grille, respectivement. Les effets de GRACE DA sur les simulations de débit ont été évalués par rapport aux observations de trois stations des débits, où il pourrait effectivement améliorer la simulation des débits élevés pendant la saison de fonte de la neige d'avril à juin. L'influence de GRACE DA sur le volume total et les faibles débits d’eau a été trouvée variable. En général, l'utilisation des observations GRACE dans le cadre d'assimilation non seulement a amélioré la simulation de SWE, mais a également influencé efficacement la simulation des estimations de débit

    Large Area Land Cover Mapping Using Deep Neural Networks and Landsat Time-Series Observations

    Get PDF
    This dissertation focuses on analysis and implementation of deep learning methodologies in the field of remote sensing to enhance land cover classification accuracy, which has important applications in many areas of environmental planning and natural resources management. The first manuscript conducted a land cover analysis on 26 Landsat scenes in the United States by considering six classifier variants. An extensive grid search was conducted to optimize classifier parameters using only the spectral components of each pixel. Results showed no gain in using deep networks by using only spectral components over conventional classifiers, possibly due to the small reference sample size and richness of features. The effect of changing training data size, class distribution, or scene heterogeneity were also studied and we found all of them having significant effect on classifier accuracy. The second manuscript reviewed 103 research papers on the application of deep learning methodologies in remote sensing, with emphasis on per-pixel classification of mono-temporal data and utilizing spectral and spatial data dimensions. A meta-analysis quantified deep network architecture improvement over selected convolutional classifiers. The effect of network size, learning methodology, input data dimensionality and training data size were also studied, with deep models providing enhanced performance over conventional one using spectral and spatial data. The analysis found that input dataset was a major limitation and available datasets have already been utilized to their maximum capacity. The third manuscript described the steps to build the full environment for dataset generation based on Landsat time-series data using spectral, spatial, and temporal information available for each pixel. A large dataset containing one sample block from each of 84 ecoregions in the conterminous United States (CONUS) was created and then processed by a hybrid convolutional+recurrent deep network, and the network structure was optimized with thousands of simulations. The developed model achieved an overall accuracy of 98% on the test dataset. Also, the model was evaluated for its overall and per-class performance under different conditions, including individual blocks, individual or combined Landsat sensors, and different sequence lengths. The analysis found that although the deep model performance per each block is superior to other candidates, the per block performance still varies considerably from block to block. This suggests extending the work by model fine-tuning for local areas. The analysis also found that including more time stamps or combining different Landsat sensor observations in the model input significantly enhances the model performance

    Mapping of multitemporal rice (Oryza sativa L.) growth stages using remote sensing with multi-sensor and machine learning : a thesis dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science at Massey University, Manawatū, New Zealand

    Get PDF
    Figure 2.1 is adapted and re-used under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.Rice (Oryza Sativa) plays a pivotal role in food security for Asian countries, especially in Indonesia. Due to the increasing pressure of environmental changes, such as land use and climate, rice cultivation areas need to be monitored regularly and spatially to ensure sustainable rice production. Moreover, timely information of rice growth stages (RGS) can lead to more efficient of inputs distribution from water, seed, fertilizer, and pesticide. One of the efficient solutions for regularly mapping the rice crop is using Earth observation satellites. Moreover, the increasing availability of open access satellite images such as Landsat-8, Sentinel-1, and Sentinel-2 provides ample opportunities to map continuous and high-resolution rice growth stages with greater accuracy. The majority of the literature has focused on mapping rice area, cropping patterns and relied mainly on the phenology of vegetation. However, the mapping process of RGS was difficult to assess the accuracy, time-consuming, and depended on only one sensor. In this work, we discuss the use of machine learning algorithms (MLA) for mapping paddy RGS with multiple remote sensing data in near-real-time. The study area was Java Island, which is the primary rice producer in Indonesia. This study has investigated: (1) the mapping of RGS using Landsat-8 imagery and different MLAs, and their rigorous performance was evaluated by conducting a multitemporal analysis; (2) the temporal consistency of predicting RGS using Sentinel-2, MOD13Q1, and Sentinel-1 data; (3) evaluating the correlation of local statistics data and paddy RGS using Sentinel-2, PROBA-V, and Sentinel-1 with MLAs. The ground truth datasets were collected from multi-year web camera data (2014-2016) and three months of the field campaign in different regions of Java (2018). The study considered the RGS in the analysis to be vegetative, reproductive, ripening, bare land, and flooding, and MLAs such as support vector machines (SVMs), random forest (RF), and artificial neural network (ANN) were used. The temporal consistency matrix was used to compare the classification maps within three sensor datasets (Landsat-8 OLI, Sentinel-2, and Sentinel-2, MOD13Q1, Sentinel-1) and in four periods (5, 10, 15, 16 days). Moreover, the result of the RGS map was also compared with monthly data from local statistics within each sub-district using cross-correlation analysis. The result from the analysis shows that SVM with a radial base function outperformed the RF and ANN and proved to be a robust method for small-size datasets (< 1,000 points). Compared to Sentinel-2, Landsat-8 OLI gives less accuracy due to the lack of a red-edge band and larger pixel size (30 x 30 m). Integration of Sentinel-2, MOD13Q1, and Sentinel-1 improved the classification performance and increased the temporal availability of cloud-free maps. The integration of PROBA-V and Sentinel-1 improved the classification accuracy from the Landsat-8 result, consistent with the monthly rice planting area statistics at the sub-district level. The western area of Java has the highest accuracy and consistency since the cropping pattern only relied on rice cultivation. In contrast, less accuracy was noticed in the eastern area because of upland rice cultivation due to limited irrigation facilities and mixed cropping. In addition, the cultivation of shallots to the north of Nganjuk Regency interferes with the model predictions because the cultivation of shallots resembles the vegetative phase due to the water banks. One future research idea is the auto-detection of the cropping index in the complex landscape to be able to use it for mapping RGS on a global scale. Detection of the rice area and RGS using Google Earth Engine (GEE) can be an action plan to disseminate the information quickly on a planetary scale. Our results show that the multitemporal Sentinel-1 combined with RF can detect rice areas with high accuracy (>91%). Similarly, accurate RGS maps can be detected by integrating multiple remote sensing (Sentinel-2, Landsat-8 OLI, and MOD13Q1) data with acceptable accuracy (76.4%), with high temporal frequency and lower cloud interference (every 16 days). Overall, this study shows that remote sensing combined with the machine learning methodology can deliver information on RGS in a timely fashion, which is easy to scale up and consistent both in time and space and matches the local statistics. This thesis is also in line with the existing rice monitoring projects such as Crop Monitor, Crop Watch, AMIS, and Sen4Agri to support disseminating information over a large area. To sum up, the proposed workflow and detailed map provide a more accurate method and information in near real-time for stakeholders, such as governmental agencies against the existing mapping method. This method can be introduced to provide accurate information to rice farmers promptly with sufficient inputs such as irrigation, seeds, and fertilisers for ensuring national food security from the shifting planting time due to climate change

    Spatial downscaling and gap-filling of SMAP soil moisture to high resolution using MODIS surface variables and machine learning approaches over ShanDian River Basin, China

    Get PDF
    High-resolution soil moisture (SM) information is essential for regional to global hydrological and agricultural applications. The Soil Moisture Active Passive (SMAP) offers daily global composites of SM at coarse-resolution 9 and 36 km, with data gaps limiting its local application to depict SM distribution in detail. To overcome the aforementioned problem, a downscaling and gap-filling novel approach was adopted, using random forest (RF) and artificial neural network (ANN) algorithms to downscale SMAP SM data, using land-surface variables from moderate-resolution imaging spectroradiometer (MODIS) onboard Aqua and Terra satellites from the years 2018 to 2019. Firstly, four combinations (RF+Aqua, RF+Terra, ANN+Aqua, and ANN+Terra) were developed. Each combination downscaled SMAP SM at a high resolution (1 km). These combinations were evaluated by using error matrices and in situ SM at different scales in the ShanDian River (SDR) Basin. The combination RF+Terra showed a better performance, with a low averaged unbiased root mean square error (ubRMSE) of 0.034 (Formula presented.) / (Formula presented.) and high averaged correlation (R) of 0.54 against the small-, medium-, and large-scale in situ SM. Secondly, the impact of various land covers was examined by using downscaled SMAP and in situ SM. Vegetation attenuation makes woodland more error-prone and less correlated than grassland and farmland. Finally, the RF+Terra and ANN+Terra combinations were selected for their higher accuracy in gap filling of downscaled SMAP SM. The gap-filled downscaled SMAP SM results were compared spatially with China Land Data Assimilation System (CLDAS) SM and in situ SM. The RF+Terra combination outcomes were more humid than ANN+Terra combination results in the SDR basin. Overall, the RF+Terra combination gap-filled data showed high R (0.40) and less ubRMSE (0.064 (Formula presented.) / (Formula presented.)) against in situ SM, which was close to CLDAS SM. This study showed that the proposed RF- and ANN-based downscaling methods have a potential to improve the spatial resolution and gap-filling of SMAP SM at a high resolution (1 km)

    Feasibility of Remote Sensing Based Deep Learning in Crop Yield Prediction

    Get PDF
    In this dissertation the applicability of novel machine learning methods with remote sensing data was studied in the context of agricultural decision support systems in smart farming. The main focus was the utilization of high-resolution unmanned aerial vehicle (UAV) data to perform in-season crop yield estimation with spatial and spatio-temporal deep learning model architectures in a Finnish coastal habitat. While open-access satellite data has already been utilized in crop-related modelling, such as crop type classification and yield prediction, intra-field scale prediction for the smaller fields common in the Nordic countries requires images with higher resolution than currently available from open-access satellite systems. In addition to using UAV remote sensing data, various combinations of crop field related sensor data, data from open-access sources and satellite data were evaluated. Data quality is also an important aspect with remote sensing data, with high altitude satellite-based earth observation suffering from occasional obstructions by the cloud canopy. A decision tree model was employed to estimate cloud coverage by using UAV data as cloudless ground truth. In this dissertation it is shown that crop yield prediction with convolutional neural networks (CNNs) is feasible with high-resolution UAV data and produces results accurate enough for performing corrective farming actions in-season. Using UAV data time series not only improves the modelling performance (post-season prediction) with high-resolution UAV RGB data but also improves the predictive capabilities (in-season prediction). Furthermore, the use of various data sources for crop yield prediction in addition to UAV RGB data is shown to improve the predictive capabilities of the model. In summary, the use of deep learning techniques can be seen to improve the smart farming decision support pipeline by providing performant and reliable decision engines
    corecore