11 research outputs found

    Fetal Brain Tissue Annotation and Segmentation Challenge Results

    Full text link
    In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, brainstem, deep grey matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.Comment: Results from FeTA Challenge 2021, held at MICCAI; Manuscript submitte

    Study on the Method of Constructing a Statistical Shape Model and Its Application to the Segmentation of Internal Organs in Medical Images

    Get PDF
    In image processing, segmentation is one of the critical tasks for diagnostic analysis and image interpretation. In the following thesis, we describe the investigation of three problems related to the segmentation algorithms for medical images: Active shape model algorithm, 3-dimensional (3-D) statistical shape model building and organic segmentation experiments. For the development of Active shape models, the constraints of statistical model reduced this algorithm to be difficult for various biological shapes. To overcome the coupling of parameters in the original algorithm, in this thesis, the genetic algorithm is introduced to relax the shape limitation. How to construct a robust and effective 3-D point model is still a key step in statistical shape models. Generally the shape information is obtained from manually segmented voxel data. In this thesis, a two-step procedure for generating these models was designed. After transformed the voxel data to triangular polygonal data, in the first step, attitudes of these interesting objects are aligned according their surface features. We propose to reflect the surface orientations by means of their Gauss maps. As well the Gauss maps are mapped to a complex plane using stereographic projection approach. The experiment was run to align a set of left lung models. The second step is identifying the positions of landmarks on polygonal surfaces. This is solved by surface parameterization method. We proposed two simplex methods to correspond the landmarks. A semi-automatic method attempts to “copy” the phasic positions of pre-placed landmarks to all the surfaces, which have been mapped to the same parameterization domain. Another automatic corresponding method attempts to place the landmarks equidistantly. Finally, the goodness experiments were performed to measure the difference to manually corresponded results. And we also compared the affection to correspondence when using different surface mapping methods. The third part of this thesis is applying the segmentation algorithms to solve clinical problems. We did not stick to the model-based methods but choose the suitable one or their complex according to the objects. In the experiment of lung regions segmentation which includes pulmonary nodules, we propose a complementary region growing method to deal with the unpredictable variation of image densities of lesion regions. In the experiments of liver regions, instead of using region growing method in 3-D style, we turn into a slice-by-slice style in order to reduce the overflows. The image intensity of cardiac regions is distinguishable from lung regions in CT image. But as to the adjacent zone of heart and liver boundary are generally blurry. We utilized a shape model guided method to refine the segmentation results.3-D segmentation techniques have been applied widely not only in medical imaging fields, but also in machine vision, computer graphic. At the last part of this thesis, we resume some interesting topics such as 3-D visualization for medical interpretation, human face recognition and object grasping robot etc.九州工業大学博士学位論文 学位記番号:工博甲第353号 学位授与年月日:平成25年9月27日Chapter 1: Introduction|Chapter 2: Framework of Medical Image Segmentation|Chapter 3: 2-D Organic Regions Using Active Shape Model and Genetic Algorithm|Chapter 4: Alignment of 3-D Models|Chapter 5: Corespondence of 3-D Models|Chapter 6:Experiments of Organic Segmentation|Chapter 7: Visualization Technology and Its Applications|Chapter 8: Conclusions and Future Works九州工業大学平成25年

    Atlas Construction for Measuring the Variability of Complex Anatomical Structures

    Get PDF
    RÉSUMÉ La recherche sur l'anatomie humaine, en particulier sur le cœur et le cerveau, est d'un intérêt particulier car leurs anomalies entraînent des pathologies qui sont parmi les principales causes de décès dans le monde et engendrent des coûts substantiels. Heureusement, les progrès en imagerie médicale permettent des diagnostics et des traitements autrefois impossibles. En contrepartie, la quantité phénoménale de données produites par ces technologies nécessite le développement d'outils efficaces pour leur traitement. L'objectif de cette thèse est de proposer un ensemble d'outils permettant de normaliser des mesures prélevées sur différents individus, essentiels à l'étude des caractéristiques de structures anatomiques complexes. La normalisation de mesures consiste à rassembler une collection d'images dans une référence commune, aussi appelée construction d'atlas numériques, afin de combiner des mesures provenant de différents patients. Le processus de construction inclut deux étapes principales; la segmentation d'images pour trouver des régions d'intérêts et le recalage d'images afin de déterminer les correspondances entres régions d'intérêts. Les méthodes actuelles de constructions d'atlas peuvent nécessiter des interventions manuelles, souvent fastidieuses, variables, et sont en outre limitées par leurs mécanismes internes. Principalement, le recalage d'images dépend d'une déformation incrémentales d'images sujettes a des minimums locaux. Le recalage n'est ainsi pas optimal lors de grandes déformations et ces limitations requièrent la nécessite de proposer de nouvelles approches pour la construction d'atlas. Les questions de recherche de cette thèse se concentrent donc sur l'automatisation des méthodes actuelles ainsi que sur la capture de déformations complexes de structures anatomiques, en particulier sur le cœur et le cerveau. La méthodologie adoptée a conduit à trois objectifs de recherche spécifiques. Le premier prévoit un nouveau cadre de construction automatise d'atlas afin de créer le premier atlas humain de l'architecture de fibres cardiaques. Le deuxième vise à explorer une nouvelle approche basée sur la correspondance spectrale, nommée FOCUSR, afin de capturer une grande variabilité de formes sur des maillages. Le troisième aboutit finalement à développer une approche fondamentalement différente pour le recalage d'images à fortes déformations, nommée les démons spectraux. Le premier objectif vise plus particulièrement à construire un atlas statistique de l'architecture des fibres cardiaques a partir de 10 cœurs ex vivo humains. Le système développé a mené à deux contributions techniques et une médicale, soit l'amélioration de la segmentation de structures cardiaques et l'automatisation du calcul de forme moyenne, ainsi que notamment la première étude chez l'homme de la variabilité de l'architecture des fibres cardiaques. Pour résumer les principales conclusions, les fibres du cœur humain moyen varient de +- 12 degrés, l'angle d'helix s'étend entre -41 degrés (+- 26 degrés) sur l'épicarde à +66 degrés (+- 15 degrés) sur l'endocarde, tandis que l'angle transverse varie entre +9 degrés (+- 12 degrés) et +34 degrés (+- 29 degrés) à travers le myocarde. Ces résultats sont importants car ces fibres jouent un rôle clef dans diverses fonctions mécaniques et électrophysiologiques du cœur. Le deuxième objectif cherche à capturer une grande variabilité de formes entre structures anatomiques complexes, plus particulièrement entre cortex cérébraux à cause de l'extrême variabilité de ces surfaces et de leur intérêt pour l'étude de fonctions cognitives. La nouvelle méthode de correspondance surfacique, nommée FOCUSR, exploite des représentations spectrales car l'appariement devient plus facile et rapide dans le domaine spectral plutôt que dans l'espace Euclidien classique. Dans sa forme la plus simple, FOCUSR améliore les méthodes spectrales actuelles par un recalage non rigide des représentations spectrales, toutefois, son plein potentiel est atteint en exploitant des données supplémentaires lors de la mise en correspondance. Par exemple, les résultats ont montré que la profondeur des sillons et de la courbure du cortex cérébral améliore significativement la correspondance de surfaces de cerveaux. Enfin, le troisième objectif vise à améliorer le recalage d'images d'organes ayant des fortes variabilités entre individus ou subis de fortes déformations, telles que celles créées par le mouvement cardiaque. La méthodologie amenée par la correspondance spectrale permet d'améliorer les approches conventionnelles de recalage d'images. En effet, les représentations spectrales, capturant des similitudes géométriques globales entre différentes formes, permettent de surmonter les limitations actuelles des méthodes de recalage qui restent guidées par des forces locales. Le nouvel algorithme, nommé démons spectraux, peut ainsi supporter de très grandes déformations locales et complexes entre images, et peut être tout autant adapté a d'autres approches, telle que dans un cadre de recalage conjoint d'images. Il en résulte un cadre complet de construction d'atlas, nommé démons spectraux multijoints, où la forme moyenne est calculée directement lors du processus de recalage plutôt qu'avec une approche séquentielle de recalage et de moyennage. La réalisation de ces trois objectifs spécifiques a permis des avancées dans l'état de l'art au niveau des méthodes de correspondance spectrales et de construction d'atlas, en permettant l'utilisation d'organes présentant une forte variabilité de formes. Dans l'ensemble, les différentes stratégies fournissent de nouvelles contributions sur la façon de trouver et d'exploiter des descripteurs globaux d'images et de surfaces. D'un point de vue global, le développement des objectifs spécifiques établit un lien entre : a) la première série d'outils, mettant en évidence les défis à recaler des images à fortes déformations, b) la deuxième série d'outils, servant à capturer de fortes déformations entre surfaces mais qui ne reste pas directement applicable a des images, et c) la troisième série d'outils, faisant un retour sur le traitement d'images en permettant la construction d'atlas a partir d'images ayant subies de fortes déformations. Il y a cependant plusieurs limitations générales qui méritent d'être investiguées, par exemple, les données partielles (tronquées ou occluses) ne sont pas actuellement prises en charge les nouveaux outils, ou encore, les stratégies algorithmiques utilisées laissent toujours place à l'amélioration. Cette thèse donne de nouvelles perspectives dans les domaines de l'imagerie cardiaque et de la neuroimagerie, toutefois, les nouveaux outils développés sont assez génériques pour être appliqués a tout recalage d'images ou de surfaces. Les recommandations portent sur des recherches supplémentaires qui établissent des liens avec la segmentation à base de graphes, pouvant conduire à un cadre complet de construction d'atlas où la segmentation, le recalage, et le moyennage de formes seraient tous interdépendants. Il est également recommandé de poursuivre la recherche sur la construction de meilleurs modèles électromécaniques cardiaques à partir des résultats de cette thèse. En somme, les nouveaux outils offrent de nouvelles bases de recherche et développement pour la normalisation de formes, ce qui peut potentiellement avoir un impact sur le diagnostic, ainsi que la planification et la pratique d'interventions médicales.----------ABSTRACT Research on human anatomy, in particular on the heart and the brain, is a primary concern for society since their related diseases are among top killers across the globe and have exploding associated costs. Fortunately, recent advances in medical imaging offer new possibilities for diagnostics and treatments. On the other hand, the growth in data produced by these relatively new technologies necessitates the development of efficient tools for processing data. The focus of this thesis is to provide a set of tools for normalizing measurements across individuals in order to study complex anatomical characteristics. The normalization of measurements consists of bringing a collection of images into a common reference, also known as atlas construction, in order to combine measurements made on different individuals. The process of constructing an atlas involves the topics of segmentation, which finds regions of interest in the data (e.g., an organ, a structure), and registration, which finds correspondences between regions of interest. Current frameworks may require tedious and hardly reproducible user interactions, and are additionally limited by their computational schemes, which rely on slow iterative deformations of images, prone to local minima. Image registration is, therefore, not optimal with large deformations. Such limitations indicate the need to research new approaches for atlas construction. The research questions are consequently addressing the problems of automating current frameworks and capturing global and complex deformations between anatomical structures, in particular between human hearts and brains. More precisely, the methodology adopted in the thesis led to three specific research objectives. Briefly, the first step aims at developing a new automated framework for atlas construction in order to build the first human atlas of the cardiac fiber architecture. The second step intends to explore a new approach based on spectral correspondence, named FOCUSR, in order to precisely capture large shape variability. The third step leads, finally, to a fundamentally new approach for image registration with large deformations, named the Spectral Demons algorithm. The first objective aims more specifically at constructing a statistical atlas of the cardiac fiber architecture from a unique human dataset of 10 ex vivo hearts. The developed framework made two technical, and one medical, contributions, that are the improvement of the segmentation of cardiac structures, the automation of the shape averaging process, and more importantly, the first human study on the variability of the cardiac fiber architecture. To summarize the main finding, the fiber orientations in human hearts has been found to vary with about +- 12 degrees, the range of the helix angle spans from -41 degrees (+- 26 degrees) on the epicardium to +66 degrees (+- 15 degrees) on the endocardium, while, the range of the transverse angle spans from +9 degrees (+- 12 degrees) to +34 degrees (+- 29 degrees) across the myocardial wall. These findings are significant in cardiology since the fiber architecture plays a key role in cardiac mechanical functions and in electrophysiology. The second objective intends to capture large shape variability between complex anatomical structures, in particular between cerebral cortices due to their highly convoluted surfaces and their high anatomical and functional variability across individuals. The new method for surface correspondence, named FOCUSR, exploits spectral representations since matching is easier in the spectral domain rather than in the conventional Euclidean space. In its simplest form, FOCUSR improves current spectral approaches by refining spectral representations with a nonrigid alignment; however, its full power is demonstrated when using additional features during matching. For instance, the results showed that sulcal depth and cortical curvature improve significantly the accuracy of cortical surface matching. Finally, the third objective is to improve image registration for organs with a high inter-subject variability or undergoing very large deformations, such as the heart. The new approach brought by the spectral matching technique allows the improvement of conventional image registration methods. Indeed, spectral representations, which capture global geometric similarities and large deformations between different shapes, may be used to overcome a major limitation of current registration methods, which are in fact guided by local forces and restrained to small deformations. The new algorithm, named Spectral Demons, can capture very large and complex deformations between images, and can additionally be adapted to other approaches, such as in a groupwise configuration. This results in a complete framework for atlas construction, named Groupwise Spectral Demons, where the average shape is computed during the registration process rather than in sequential steps. The achievements of these three specific objectives permitted advances in the state-of-the-art of spectral matching methods and of atlas construction, enabling the registration of organs with significant shape variability. Overall, the investigation of these different strategies provides new contributions on how to find and exploit global descriptions of images and surfaces. From a global perspective, these objectives establish a link between: a) the first set of tools, that highlights the challenges in registering images with very large deformations, b) the second set of tools, that captures very large deformations between surfaces but are not applicable to images, and c) the third set of tools, that comes back on processing images and allows a natural construction of atlases from images with very large deformations. There are, however, several general remaining limitations, for instance, partial data (truncated or occluded) is currently not supported by the new tools, or also, the strategy for computing and using spectral representations still leaves room for improvement. This thesis gives new perspectives in cardiac and neuroimaging, yet at the same time, the new tools remain general enough for virtually any application that uses surface or image registration. It is recommended to research additional links with graph-based segmentation methods, which may lead to a complete framework for atlas construction where segmentation, registration and shape averaging are all interlinked. It is also recommended to pursue research on building better cardiac electromechanical models from the findings of this thesis. Nevertheless, the new tools provide new grounds for research and application of shape normalization, which may potentially impact diagnostic, as well as planning and performance of medical interventions

    Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

    Get PDF
    This two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the challenge on Quantification of Uncertainties in Biomedical Image Quantification (QUBIQ). These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in September 2021. The 91 revised papers presented in these volumes were selected form 151 submissions. Due to COVID-19 pandemic the conference was held virtually. This is an open access book

    Translating computational modelling tools for clinical practice in congenital heart disease

    Get PDF
    Increasingly large numbers of medical centres worldwide are equipped with the means to acquire 3D images of patients by utilising magnetic resonance (MR) or computed tomography (CT) scanners. The interpretation of patient 3D image data has significant implications on clinical decision-making and treatment planning. In their raw form, MR and CT images have become critical in routine practice. However, in congenital heart disease (CHD), lesions are often anatomically and physiologically complex. In many cases, 3D imaging alone can fail to provide conclusive information for the clinical team. In the past 20-30 years, several image-derived modelling applications have shown major advancements. Tools such as computational fluid dynamics (CFD) and virtual reality (VR) have successfully demonstrated valuable uses in the management of CHD. However, due to current software limitations, these applications have remained largely isolated to research settings, and have yet to become part of clinical practice. The overall aim of this project was to explore new routes for making conventional computational modelling software more accessible for CHD clinics. The first objective was to create an automatic and fast pipeline for performing vascular CFD simulations. By leveraging machine learning, a solution was built using synthetically generated aortic anatomies, and was seen to be able to predict 3D aortic pressure and velocity flow fields with comparable accuracy to conventional CFD. The second objective was to design a virtual reality (VR) application tailored for supporting the surgical planning and teaching of CHD. The solution was a Unity-based application which included numerous specialised tools, such as mesh-editing features and online networking for group learning. Overall, the outcomes of this ongoing project showed strong indications that the integration of VR and CFD into clinical settings is possible, and has potential for extending 3D imaging and supporting the diagnosis, management and teaching of CHD

    Brain-Inspired Computing

    Get PDF
    This open access book constitutes revised selected papers from the 4th International Workshop on Brain-Inspired Computing, BrainComp 2019, held in Cetraro, Italy, in July 2019. The 11 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They deal with research on brain atlasing, multi-scale models and simulation, HPC and data infra-structures for neuroscience as well as artificial and natural neural architectures

    Machine Learning Methods with Noisy, Incomplete or Small Datasets

    Get PDF
    In many machine learning applications, available datasets are sometimes incomplete, noisy or affected by artifacts. In supervised scenarios, it could happen that label information has low quality, which might include unbalanced training sets, noisy labels and other problems. Moreover, in practice, it is very common that available data samples are not enough to derive useful supervised or unsupervised classifiers. All these issues are commonly referred to as the low-quality data problem. This book collects novel contributions on machine learning methods for low-quality datasets, to contribute to the dissemination of new ideas to solve this challenging problem, and to provide clear examples of application in real scenarios

    Alzheimer’s Dementia Recognition Through Spontaneous Speech

    Get PDF
    corecore